Re: Better use of PolynomialReduce?
- To: mathgroup at smc.vnet.net
- Subject: [mg121062] Re: Better use of PolynomialReduce?
- From: Peter Pein <petsie at dordos.net>
- Date: Fri, 26 Aug 2011 05:21:44 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <j35al3$og1$1@smc.vnet.net>
Am 25.08.2011 13:11, schrieb Irretrev Unable: > I've been using > > > scPhiDecomp[expr_]:= PolynomialReduce[expr, {x^2-y^2,2 x y}, {x,y}] > > which works great on > > scPhiDecomp[a x^2 + 2c x y -a y^2] >>> {{a,c},0} > > but doesn't do what I want on > > scPhiDecomp[y (a x^2 + 2c x y -a y^2)] >>> {{0,(a x)/2+c y},-a y^3} > > How do I make scPhiDecomp produce > {{a y, c y}, 0} > on the second expression? > > Thanks, > Keith > Hi Keith, the results of PolynomialReduce often depend on the order of the variables ( {x, y} vs. {y,x} ). Try both and select the less complex one. In[1]:= newscPhiDecomp[expr_] := SortBy[ PolynomialReduce[expr, {x^2 - y^2, 2*x*y}, #1] & /@ {{x, y}, {y, x}}, LeafCount][[1]] In[2]:= newscPhiDecomp[a*x^2 + 2*c*x*y - a*y^2] Out[2]= {{a, c}, 0} In[3]:= newscPhiDecomp[y*(a*x^2 + 2*c*x*y - a*y^2)] Out[3]= {{a*y, c*y}, 0} hth, Peter