Re: problem in minimization of a matrix
- To: mathgroup at smc.vnet.net
- Subject: [mg123333] Re: problem in minimization of a matrix
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Fri, 2 Dec 2011 07:19:46 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201112011303.IAA20311@smc.vnet.net>
- Reply-to: drmajorbob at yahoo.com
That's useless without definitions for At and Ct.
Bobby
On Thu, 01 Dec 2011 07:03:58 -0600, Herman <btta2010 at gmail.com> wrote:
> Hi Peter,
>
> My problem is that i want to minimize the determinant of the matrix \Tau
> over all values of the matrix \Sigma but couldn't understand
>
> \[Sigma]M[\[Rho]_, \[Phi]_] =
> Cosh[2 \[Rho]]/
> 2 ({{1 +
> Tanh[2 \[Rho]] Cos[\[Phi]], -Tanh [
> 2 \[Rho]] Sin[\[Phi]] }, {-Tanh [2 \[Rho]] Sin[\[Phi]],
> 1 - Tanh[2 \[Rho]] Cos[\[Phi]]}});
> I want to minimize this matrix \[Tau][\[Alpha]_, \[Omega]0_, t_, r_,
> \[Rho]_, \[Phi]_] =
> FindMinimum[{Det[
> At[\[Alpha], \[Omega]0, t,
> r] - (Ct[\[Alpha], \[Omega]0, t, r]
> Inverse[(At[\[Alpha], \[Omega]0, t,
> r] + \[Sigma]M[\[Rho], \[CurlyPhi]])]
> Ct[\[Alpha], \[Omega]0, t, r]\[Transpose])], \[Rho] >= 0,
> 0 <= \[Phi] <= 2 \[Pi]}, {\[Rho], \[Phi]}]
>
> The matrx At & Ct are real numbers which depend on my choice of the
> parameters \alpha, \omega, t & r. please write if any things is unclear
>
> Many thanks for any comment.
>
--
DrMajorBob at yahoo.com
- References:
- Re: problem in minimization of a matrix
- From: Herman <btta2010@gmail.com>
- Re: problem in minimization of a matrix