Fast vs. Slow NonlinearModelFit models
- To: mathgroup at smc.vnet.net
- Subject: [mg123817] Fast vs. Slow NonlinearModelFit models
- From: "Dan O'Brien" <danobrie at gmail.com>
- Date: Wed, 21 Dec 2011 06:52:34 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Hello,
I'm wondering if anyone has a suggestion for speeding up the
NonlinearModelFit computation for model2 below. The model used to fit
my experimental data can be a simple complex function who's magnitude
squared is a lorentzian (model1), or, some may argue a more complete
model is the same function convolved with a gaussian which gives a
function that involves the complementary error function (model2), the
Voigt profile. As indicated below with AbsoluteTiming using these two
different models show VERY different computational times. I imagine it
has something to do with mathematica's internal implementation of Erfc
In[1]:= $Version
(*Lorentzian Lineshape*)
\[Chi]R[\[Omega]_, {A_, \[Phi]A_, \[CapitalGamma]_, \[Omega]v_}] := (
A E^(I \[Phi]A))/(-(\[Omega] - \[Omega]v) - I \[CapitalGamma]);
(*Voigt Lineshape*)
z[\[Sigma]_, \[CapitalGamma]_, \[Omega]v_, \[Omega]_] := (\[Omega] - \
\[Omega]v + I \[CapitalGamma])/(Sqrt[2] \[Sigma])
FadeevaF[z_] := Exp[-z^2] Erfc[-I z]
IH\[Chi]R[\[Omega]_, {\[Sigma]_,
A_, \[Phi]A_, \[CapitalGamma]_, \[Omega]v_}] :=
I Sqrt[\[Pi]/2] (
A E^(I \[Phi]A))/\[Sigma] FadeevaF[
z[\[Sigma], \[CapitalGamma], \[Omega]v, \[Omega]]]
(*Redefine functions so A is peak amplitude of the function magnitude \
squared*)
A\[Chi]R[\[Omega]_, {\[Sigma]_,
A_, \[Phi]A_, \[CapitalGamma]_, \[Omega]v_}] := \[Chi]R[ \[Omega], \
{Sqrt[Abs[A]] Abs[\[CapitalGamma]], \[Phi]A,
Abs[\[CapitalGamma]], \[Omega]v}]
AIH\[Chi]R[\[Omega]_, {\[Sigma]_,
A_, \[Phi]A_, \[CapitalGamma]_, \[Omega]v_}] :=
IH\[Chi]R[\[Omega], {\[Sigma], (
Sqrt[Abs[A]] E^(-(1/2) \[CapitalGamma]^2/\[Sigma]^2) Sqrt[2/\[Pi]]
Abs[\[Sigma]])/
Erfc[Abs[\[CapitalGamma]]/(
Sqrt[2] Abs[\[Sigma]])], \[Phi]A, \[CapitalGamma], \[Omega]v}]
(*Generate data with noise*)
dataplot =
ListPlot[data =
Table[{\[Omega],
Abs[AIH\[Chi]R[\[Omega], {4, 1.1, 0, 2.1, 0}] +
AIH\[Chi]R[\[Omega], {4, .6, \[Pi], 2.1, 18}]]^2 +
RandomReal[{-0.05, 0.05}]}, {\[Omega], -30, 50, .5}],
Joined -> True]
(*Models*)
model1 = Abs[
A\[Chi]R[#, {4, a1, 0, \[CapitalGamma]1, \[Omega]vo1}] +
A\[Chi]R[#, {4, a2, \[Pi], \[CapitalGamma]2, \[Omega]vo2}]]^2 &;
model2 =
Abs[AIH\[Chi]R[#, {4, a1, 0, \[CapitalGamma]1, \[Omega]vo1}] +
AIH\[Chi]R[#, {4, a2, \[Pi], \[CapitalGamma]2, \[Omega]vo2}]]^2 &;
(*Fit*)
AbsoluteTiming[
mod1 = NonlinearModelFit[data,
model1[\[Omega]], {{a1, 1}, {\[CapitalGamma]1, 2}, {\[Omega]vo1,
1}, {a2, .8}, {\[CapitalGamma]2, 2}, {\[Omega]vo2,
15}}, \[Omega]]][[1]]
AbsoluteTiming[
mod2 = NonlinearModelFit[data,
model2[\[Omega]], {{a1, 1}, {\[CapitalGamma]1, 2}, {\[Omega]vo1,
1}, {a2, .8}, {\[CapitalGamma]2, 2}, {\[Omega]vo2,
15}}, \[Omega]]][[1]]
Show[{dataplot,
Plot[{Normal[mod1[\[Omega]]],
Normal[mod2[\[Omega]]]}, {\[Omega], -30, 50}]}]
Out[1]= "8.0 for Microsoft Windows (32-bit) (October 6, 2011)"
Out[8]=****Plot Snipped
Out[11]= 0.0390625 *Here is AbsoluteTiming for model1*
Out[12]= 75.0078125 *Here is AbsoluteTiming for model2*
Out[13]=****Plot Snipped
- Follow-Ups:
- Re: Fast vs. Slow NonlinearModelFit models
- From: DrMajorBob <btreat1@austin.rr.com>
- Re: Fast vs. Slow NonlinearModelFit models