Re: problem in minimization of a matrix
- To: mathgroup at smc.vnet.net
- Subject: [mg122893] Re: problem in minimization of a matrix
- From: Peter Pein <petsie at dordos.net>
- Date: Mon, 14 Nov 2011 07:09:07 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <j9o3ib$v$1@smc.vnet.net>
Am 13.11.2011 10:44, schrieb Herman16:
> \[Sigma]M[\[Rho]_, \[Phi]_] :=
> ArrayFlatten[
> Cosh[2 \[Rho]]/
> 2 ({{1 +
> Tanh[2 \[Rho]] Cos[\[Phi]], -Tanh [
> 2 \[Rho]] Sin[\[Phi]] }, {-Tanh [2 \[Rho]] Sin[\[Phi]],
> 1 - Tanh[2 \[Rho]] Cos[\[Phi]]}})]
>
> NMinimize[{\[Sigma]M[\[Rho], \[Phi]], \[Rho]>= 0,
> 0<= \[Phi]<= 2 \[Pi]}, {\[Rho], \[Phi]}]
>
> \[Tau][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_,
> r_, \[Rho]_, \[Phi]_] :=
> Det[At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] -
> Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]
> Inverse[(At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t,
> r] + \[Sigma]M[\[Rho], \[Phi]])]
> Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]\[Transpose]]
>
> But the matrix At& Ct are depend on numbers, the minimization is on \
> the matrix \[Sigma]M[\[Rho]_, \[Phi]_]
>
How do you define a comparison relation on matrices?