Problem in "block cutting"
- To: mathgroup at smc.vnet.net
- Subject: [mg121567] Problem in "block cutting"
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Tue, 20 Sep 2011 06:08:57 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
In architecture there is a curve called an hanging chain curve that is based on Sinh and Cosh functions. I want to cut an arch made of a cylinder of the hanging chain from a rectangular set of cubic blocks. I have it visualized but not actualized in Mathematica: x0 = (Sinh[p]/1.2)/1.25; y0 = Sin[t]; z0 = (2*Cosh[p] - 3)/1.25 - 0.075; gc = ParametricPlot3D[{x0, z0, y0}, {t, -Pi, Pi}, {p, -1, 1}, Boxed -> False, Axes -> True, TextureCoordinateFunction -> ({2 #4, #5} &), PlotStyle -> Directive[Brown, Specularity[White, 50], Texture[ExampleData[{"ColorTexture", "BurlOak"}]]], Lighting -> "Neutral"] g1 = Show[ Graphics3D[{Opacity[0.5], Cuboid[{0, -1, 0}], Cuboid[{-1, -1, 0}], Cuboid[{-1, -1, -1}], Cuboid[{0, -1, -1}]}], Boxed -> False] Show[{gc, g1}, PlotRange -> All] Something like the RegionFunction: ga = SphericalPlot3D[ 1 + Sin[3 \[Theta]] Sin[3 \[Phi]]/3, {\[Theta], 0, Pi}, {\[Phi], 0, 2 Pi}, RegionFunction -> (#6 > 0.95 &), PlotStyle -> FaceForm[Blue, Cyan], Boxed -> False, Axes -> False, Mesh -> False] Would seem to be a way to approach the problem, but I can't figure out how. Roger Bagula
- Follow-Ups:
- Re: Problem in "block cutting"
- From: Heike Gramberg <heike.gramberg@gmail.com>
- Re: Problem in "block cutting"