Re: How to Scale and vary plot for a Differential Equation
- To: mathgroup at smc.vnet.net
- Subject: [mg127395] Re: How to Scale and vary plot for a Differential Equation
- From: Rahul Chakraborty <rahul.6sept at gmail.com>
- Date: Sun, 22 Jul 2012 04:30:05 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20120720074852.62B9B685F@smc.vnet.net>
Dear Bob, Thanks. But one query, why it is required to use Log in " Log[D[x[t] /. sol, t]". Because in simple plot without Manipulate it is not required. Regards, rc On 7/21/12, Bob Hanlon <hanlonr357 at gmail.com> wrote: > You appear to be confusing the syntax of DSolve with that of NDSolve. > DSolve can be used to solve the DE once rather than repeatedly inside > the manipulate. > > DSolve[{x'[t] - r x[t] (1 - x[t]/K) == 0, > x[0] == 1/2}, x[t], t][[1]] // Quiet > > {x[t] -> (E^(r*t)*K)/(-1 + E^(r*t) + 2*K)} > > Manipulate[ > Module[{sol}, > sol = {x[t] -> (E^(r*t)*K)/(-1 + E^(r*t) + 2*K)}; > ParametricPlot[ > Evaluate[{ > x[t] /. sol, > Log[D[x[t] /. sol, t]]}], > {t, 0, 50}, > Frame -> True, > Axes -> False, > FrameLabel -> {"x", Log[Overscript[x, "."]]}, > AspectRatio -> 1, > PlotRange -> {{0, 5.1}, {-6, 2.1}}]], > {{r, 1}, 1, 5, 0.01, Appearance -> "Labeled"}, > {{K, 1}, 1, 5, 0.01, Appearance -> "Labeled"}] > > > Bob Hanlon > > > On Fri, Jul 20, 2012 at 3:48 AM, Rahul Chakraborty > <rahul.6sept at gmail.com> wrote: >> Dear all, >> >> Kindly guide me for the above mentioned subject. I did try to code it but >> needs guidance.The code as below >> >> Clear[x]; >> k[x_]=Manipulate[DynamicModule[{r:=1,K:=1},{Slider[Dynamic[r]],Slider[Dynamic[K]]},eqn=x'[t]-r >> x[t] >> (1-x[t]/K)==0//Quiet,sol=First@DSolve[{eqn,x[0]==1/2},x[t],{t,0,50}],[ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,50},Frame->True,AxesLabel->{"x",Overscript[x,"."]},AspectRatio->1],ImageSize-> >> Scaled[r,K]],{r,1,5},{K,1,5},Initialization:> >> {r:=1,K:=1},SaveDefinitions-> True]] >> >> Regards, >> rahul >> >
- References:
- How to Scale and vary plot for a Differential Equation
- From: Rahul Chakraborty <rahul.6sept@gmail.com>
- How to Scale and vary plot for a Differential Equation