Re: How to Scale and vary plot for a Differential Equation
- To: mathgroup at smc.vnet.net
- Subject: [mg127402] Re: How to Scale and vary plot for a Differential Equation
- From: Rahul Chakraborty <rahul.6sept at gmail.com>
- Date: Sun, 22 Jul 2012 04:32:26 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20120720074852.62B9B685F@smc.vnet.net>
Dear Bob, Sir, I've tried the same code for another DE. Everything is same just changed the equations and initial conditions. Its giving an error, i couldn't debug it. Clear[x]; DSolve[{x''[t]+\[Mu] (x[t]x[t]-1)x'[t]+x[t]==0,x[0]==1/2,x'[0]==0},x[t],t][[1]]//Quiet {x[t]->x[t]+\[Mu] (-1+x[t]^2) (x^\[Prime])[t]+(x^\[Prime]\[Prime])[t]==0,x[0]==1/2,x'[0]==0} Manipulate[Module[{sol},sol={x[t]->{x[t]+\[Mu] (-1+x[t]^2) (x^\[Prime])[t]+(x^\[Prime]\[Prime])[t]==0,x[0]==1/2,x'[0]==0}};ParametricPlot[Evaluate[{x[t]/.sol,Log[D[x[t]/.sol,t]]}],{t,0,50},Frame->True,Axes->False,FrameLabel->{"x",Log[Overscript[x,"."]]},AspectRatio->1,PlotRange->{{0,10.1},{-6,10.1}}]],{{\[Mu],1},1,50,0.01,Appearance->"Labeled"}] ERROR: ParametricPlot::exclul: {Im[(x^\[Prime])[t]+2 x[t] (<<1>>^(<<1>>))[<<1>>]^2+(-1+Power[<<2>>]) (x^\[Prime]\[Prime])[t]+(x^(3))[t]==0]-0} must be a list of equalities or real-valued functions. >> Kindly advice. Regards, rc On 7/21/12, Bob Hanlon <hanlonr357 at gmail.com> wrote: > It is not required. If you don't like it, don't use it. Adjust > PlotRange to taste. > > > Bob Hanlon > > > On Sat, Jul 21, 2012 at 12:57 AM, Rahul Chakraborty > <rahul.6sept at gmail.com> wrote: >> Dear Bob, >> >> Thanks. >> >> But one query, why it is required to use Log in " Log[D[x[t] /. sol, >> t]". Because in simple plot without Manipulate it is not required. >> >> >> Regards, >> rc >> >> On 7/21/12, Bob Hanlon <hanlonr357 at gmail.com> wrote: >>> You appear to be confusing the syntax of DSolve with that of NDSolve. >>> DSolve can be used to solve the DE once rather than repeatedly inside >>> the manipulate. >>> >>> DSolve[{x'[t] - r x[t] (1 - x[t]/K) == 0, >>> x[0] == 1/2}, x[t], t][[1]] // Quiet >>> >>> {x[t] -> (E^(r*t)*K)/(-1 + E^(r*t) + 2*K)} >>> >>> Manipulate[ >>> Module[{sol}, >>> sol = {x[t] -> (E^(r*t)*K)/(-1 + E^(r*t) + 2*K)}; >>> ParametricPlot[ >>> Evaluate[{ >>> x[t] /. sol, >>> Log[D[x[t] /. sol, t]]}], >>> {t, 0, 50}, >>> Frame -> True, >>> Axes -> False, >>> FrameLabel -> {"x", Log[Overscript[x, "."]]}, >>> AspectRatio -> 1, >>> PlotRange -> {{0, 5.1}, {-6, 2.1}}]], >>> {{r, 1}, 1, 5, 0.01, Appearance -> "Labeled"}, >>> {{K, 1}, 1, 5, 0.01, Appearance -> "Labeled"}] >>> >>> >>> Bob Hanlon >>> >>> >>> On Fri, Jul 20, 2012 at 3:48 AM, Rahul Chakraborty >>> <rahul.6sept at gmail.com> wrote: >>>> Dear all, >>>> >>>> Kindly guide me for the above mentioned subject. I did try to code it >>>> but >>>> needs guidance.The code as below >>>> >>>> Clear[x]; >>>> k[x_]=Manipulate[DynamicModule[{r:=1,K:=1},{Slider[Dynamic[r]],Slider[Dynamic[K]]},eqn=x'[t]-r >>>> x[t] >>>> (1-x[t]/K)==0//Quiet,sol=First@DSolve[{eqn,x[0]==1/2},x[t],{= t,0,50}],[ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,50},Frame->True,AxesLabel->{"x",Overscript[x,"."]},AspectRatio->1],ImageSize-> >>>> Scaled[r,K]],{r,1,5},{K,1,5},Initialization:> >>>> {r:=1,K:=1},SaveDefinitions-> True]] >>>> >>>> Regards, >>>> rahul >
- References:
- How to Scale and vary plot for a Differential Equation
- From: Rahul Chakraborty <rahul.6sept@gmail.com>
- How to Scale and vary plot for a Differential Equation