Re: Dr. Lynchs book Dynamical Systems with Applications using Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg125365] Re: Dr. Lynchs book Dynamical Systems with Applications using Mathematica
- From: pennsylvaniajake at gmail.com
- Date: Fri, 9 Mar 2012 06:11:02 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <3203584.822.1331070143155.JavaMail.geo-discussion-forums@ynkz21>
Could some one please explain the code?
The line starts with sol[1] and ends with ode1[-3,-4];
I have looked through all my books on Mathematica and cannot find
anything like it.
p1=VectorPlot[{2x+y,x+2y},{x,-3,3},{y,-3,3}] ;
ode1[x0_,y0_]:=NDSolve[{x'[t]=C5 2x[t]+y[t],y'[t]=C5 x[t]+2y[t],x[0]=C5 x0,y[0]=C5 y0},{x[t],y[t]},{t,-3,3}];
sol[1]=ode1[1,1];sol[2]=ode1[1,-1];sol[3]=ode1[-1,-1];sol[4]=ode1[-1,1];sol[5]=ode1[3,1];sol[6]=ode1[1,3];sol[7]=ode1[-1,-3];sol[8]=ode1[-3,-1];
p2=ParametricPlot[Evaluate[Table[{x[t],y[t]}/.sol[i],{i,8}]],{t,-3,3},
PlotRange=C2=AE{{-3,3},{-3,3}},PlotPoints=C2=AE100,AxesLabel=C2=AE{"x","y"}];
Show[{p1,p2},PlotRange=C2=AE{{-3,3},{-3,3}},AxesLabel=C2=AE{"x","y"},Axes=C2=AETrue]