Re: How can I use FindMaximum to get a result better than MachinePrecision?
- To: mathgroup at smc.vnet.net
- Subject: [mg127961] Re: How can I use FindMaximum to get a result better than MachinePrecision?
- From: Ray Koopman <koopman at sfu.ca>
- Date: Wed, 5 Sep 2012 03:10:10 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <k24irq$1k9$1@smc.vnet.net>
On Sep 4, 2:50 am, David Kirkby <drkir... at gmail.com> wrote: > I've tried this: > > In[2]:= FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8}] > > Out[2]= {1.57918, {x -> 0.785398}} > > Then played around to try to get a more accurate result. > > In[9]:= FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8}, > AccuracyGoal->20, PrecisionGoal->20] > > Out[9]= {1.57918, {x -> 0.785398}} > > In[10]:= Precision[%] > > Also: > > In[7]:= N[FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8}, > AccuracyGoal->200, PrecisionGoal->200],100] > > Out[7]= {1.57918, {x -> 0.785398}} > > In[8]:= Precision[%] > > Out[8]= MachinePrecision > > Any suggestions? FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8}, AccuracyGoal->30, PrecisionGoal->30, WorkingPrecision->40] {1.579175535558675594018935476481035678702, {x -> 0.7853981633974483096234856042864548995134}}