Re: How can I use FindMaximum to get a result better than MachinePrecision?
- To: mathgroup at smc.vnet.net
- Subject: [mg127952] Re: How can I use FindMaximum to get a result better than MachinePrecision?
- From: "danl at wolfram.com" <daniel.lichtblau0 at gmail.com>
- Date: Wed, 5 Sep 2012 03:07:09 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <k24irq$1k9$1@smc.vnet.net>
On Tuesday, September 4, 2012 4:50:53 AM UTC-5, David Kirkby wrote: > I've tried this: > > In[2]:= FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8}] > > Out[2]= {1.57918, {x -> 0.785398}} > > Then played around to try to get a more accurate result. > > In[9]:= FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8},AccuracyGoal->20, PrecisionGoal->20] > > Out[9]= {1.57918, {x -> 0.785398}} > > In[10]:= Precision[%] > > Also: > > In[7]:= N[FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8},AccuracyGoal->200, PrecisionGoal->200],100] > > Out[7]= {1.57918, {x -> 0.785398}} > > In[8]:= Precision[%] > > Out[8]= MachinePrecision > > Any suggestions? Raise WorkingPrecision. FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8},AccuracyGoal->20, PrecisionGoal->20, WorkingPrecision->30] Out[2]= {1.57917553555867559401893547648, > {x -> 0.785398163397448309705386001198}} See Help > Documentation Center > PrecisionGoal > More Information > 5th bullet item. related: Help > Documentation Center > FindMaximum > Options > AccuracyGoal & PrecisionGoal 2nd and 3rd examples. Daniel Lichtblau Wolfram Research