Re: Fibonacci integers
- To: mathgroup at smc.vnet.net
- Subject: [mg129667] Re: Fibonacci integers
- From: James Stein <mathgroup at stein.org>
- Date: Sun, 3 Feb 2013 20:19:36 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20130203074843.D429168B0@smc.vnet.net>
If you rewrite 'm' as a matrix, you do get True: m={{1,1},{1,2}}; n=3; MatrixPower[m,n]== {{Fibonacci[2 n-1],Fibonacci[2 n]}, {Fibonacci[2 n],Fibonacci[2 n+1]}} On Sat, Feb 2, 2013 at 11:48 PM, Andre Hautot <ahautot at ulg.ac.be> wrote: > > Hi, let > m={1,1},{1,2} > and n be an integer > > MatrixPower[m, n] = = {{Fibonacci[2 n - 1], Fibonacci[2 n]}, > {Fibonacci[2 n], Fibonacci[2 n + 1]}} > > should be indentically True > > I have tried FunctionExpand and FullSimplify without success, any idea ? > Thanks in advance, > > Andre >
- References:
- Fibonacci integers
- From: Andre Hautot <ahautot@ulg.ac.be>
- Fibonacci integers