Re: Fibonacci integers
- To: mathgroup at smc.vnet.net
- Subject: [mg129680] Re: Fibonacci integers
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Sun, 3 Feb 2013 20:23:56 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20130203074843.D429168B0@smc.vnet.net>
m = {{1, 1}, {1, 2}};
And @@ (
(MatrixPower[m, n] //
Flatten) ==
({{Fibonacci[2 n - 1], Fibonacci[2 n]},
{Fibonacci[2 n], Fibonacci[2 n + 1]}} //
Flatten) //
Thread) //
FunctionExpand //
FullSimplify[#, Element[n, Integers]] &
True
And @@ (
MapThread[
Equal,
{MatrixPower[m, n],
{{Fibonacci[2 n - 1], Fibonacci[2 n]},
{Fibonacci[2 n], Fibonacci[2 n + 1]}}},
2] //
FunctionExpand //
FullSimplify[#, Element[n, Integers]] & //
Flatten)
True
Bob Hanlon
On Sun, Feb 3, 2013 at 2:48 AM, Andre Hautot <ahautot at ulg.ac.be> wrote:
>
> Hi, let
> m={1,1},{1,2}
> and n be an integer
>
> MatrixPower[m, n] = = {{Fibonacci[2 n - 1], Fibonacci[2 n]},
> {Fibonacci[2 n], Fibonacci[2 n + 1]}}
>
> should be indentically True
>
> I have tried FunctionExpand and FullSimplify without success, any idea ?
> Thanks in advance,
>
> Andre
>
- References:
- Fibonacci integers
- From: Andre Hautot <ahautot@ulg.ac.be>
- Fibonacci integers