Re: Calculation of a not so simple integral
- To: mathgroup at smc.vnet.net
- Subject: [mg131225] Re: Calculation of a not so simple integral
- From: Alexei Boulbitch <Alexei.Boulbitch at iee.lu>
- Date: Wed, 19 Jun 2013 01:26:29 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <20130617103132.997F66AF4@smc.vnet.net>
Hi, Roberto,
You are right.
Now, I tried your integral on my machine, and it gave a definite analytic result:
Integrate[
Sin[x/2]^2/x^2/(x^2 - 4*Pi^2)^2/(x^2 + a^2)^2, {x, -Infinity,
Infinity}, Assumptions -> a > 0]
(3 E + 28 E \[Pi]^2 - 16 (-8 + E) \[Pi]^4 -
64 (-4 + E) \[Pi]^6)/(64 E (\[Pi] + 4 \[Pi]^3)^3)
I do not like it, since it is independent of a.
Also this:
Integrate[
Sin[x/2]^2/x^2/(x^2 - 4*Pi^2)^2/(x^2 + a^2)^2, {x, -Infinity,
Infinity}, Assumptions -> a > 0, PrincipalValue -> True]
-(1/(64 E (\[Pi] +
4 \[Pi]^3)^3))(8 I E^2 \[Pi]^3 (1 +
4 \[Pi]^2) ExpIntegralEi[-1] -
8 \[Pi]^3 (15 \[Pi] + 28 \[Pi]^3 + I ExpIntegralEi[1] +
4 I \[Pi]^2 ExpIntegralEi[1]) +
E (-3 - 28 \[Pi]^2 + 16 \[Pi]^4 + 64 \[Pi]^6 +
16 I \[Pi]^(5/2)
MeijerG[{{0, 0, 1/2}, {}}, {{0}, {}}, -2 I, 1/2] +
64 I \[Pi]^(9/2)
MeijerG[{{0, 0, 1/2}, {}}, {{0}, {}}, -2 I, 1/2]))
Shows no dependence upon a.
Further, this:
tbl = Table[{a,
NIntegrate[
Sin[x/2]^2/x^2/(x^2 - 4*Pi^2)^2/(x^2 + a^2)^2, {x, -Infinity,
Infinity}]}, {a, 0.01, 3, 0.01}];
works and produces a table of values {a, int} that can be evaluated:
ListPlot[tbl]
and exhibits a dependence upon a.
Alexei
Alexei BOULBITCH, Dr., habil.
IEE S.A.
ZAE Weiergewan,
11, rue Edmond Reuter,
L-5326 Contern, LUXEMBOURG
Office phone : +352-2454-2566
Office fax: +352-2454-3566
mobile phone: +49 151 52 40 66 44
e-mail: alexei.boulbitch at iee.lu
-----Original Message-----
From: Brambilla Roberto Luigi (RSE) [mailto:Roberto.Brambilla at rse-web.it]
Sent: Monday, June 17, 2013 12:53 PM
To: Alexei Boulbitch; mathgroup at smc.vnet.net
Subject: Re: Calculation of a not so simple integral
The integrand has NO poles on the real axis : in x=+/-(2*Pi) the integrand assume zero value :
Limit[Sin[x/2]^2/(x^2 - 4 Pi^2), x -> 2 Pi]
0
Rob.
-----Messaggio originale-----
Da: Alexei Boulbitch [mailto:Alexei.Boulbitch at iee.lu]
Inviato: luned=EC 17 giugno 2013 12.32
A: mathgroup at smc.vnet.net
Oggetto: Re: Calculation of a not so simple integral
(*Partial Fractions decomposition, Fourier Integrals
The problem diagnostics:
Calculate
Integrate[ Sin[x/2]^2 / x^2 / (x^2-4*Pi^2 )^2 / (x^2 + a^2)^2 , {x,-oo,oo}, Assumptions-> a>0]
The integrand is nonnegative, has no poles on the real line and decays rapidly ~ x^-10 as x->+-oo
Hi, Roland,
I checked your expression, it has a pole on the x axis. Check this
Sin[x/2]^2 / x^2 / (x^2-4*Pi^2 )^2 / (x^2 + a^2)^2//StandardForm
Could it be the case, that you have just written it down in a wrong way?
Alexei BOULBITCH, Dr., habil.
IEE S.A.
ZAE Weiergewan,
11, rue Edmond Reuter,
L-5326 Contern, LUXEMBOURG
Office phone : +352-2454-2566
Office fax: +352-2454-3566
mobile phone: +49 151 52 40 66 44
e-mail: alexei.boulbitch at iee.lu
RSE SpA ha adottato il Modello Organizzativo ai sensi del D.Lgs.231/2001, i=
n forza del quale l'assunzione di obbligazioni da parte della Societ=E0 avv=
iene con firma di un procuratore, munito di idonei poteri.
RSE adopts a Compliance Programme under the Italian Law (D.Lgs.231/2001). A=
ccording to this RSE Compliance Programme, any commitment of RSE is taken b=
y the signature of one Representative granted by a proper Power of Attorney=
. Le informazioni contenute in questo messaggio di posta elettronica sono r=
iservate e confidenziali e ne e' vietata la diffusione in qualsiasi modo o =
forma. Qualora Lei non fosse la persona destinataria del presente messaggio=
, La invitiamo a non diffonderlo e ad eliminarlo, dandone gentilmente comun=
icazione al mittente. The information included in this e-mail and any attac=
hments are confidential and may also be privileged. If you are not the corr=
ect recipient, you are kindly requested to notify the sender immediately, t=
o cancel it and not to disclose the contents to any other person.
- References:
- Re: Calculation of a not so simple integral
- From: Alexei Boulbitch <Alexei.Boulbitch@iee.lu>
- Re: Calculation of a not so simple integral