Re: computation of two-point objects
- To: mathgroup at smc.vnet.net
 - Subject: [mg131226] Re: computation of two-point objects
 - From: Roland Franzius <roland.franzius at uos.de>
 - Date: Wed, 19 Jun 2013 01:26:49 -0400 (EDT)
 - Delivered-to: l-mathgroup@mail-archive0.wolfram.com
 - Delivered-to: l-mathgroup@wolfram.com
 - Delivered-to: mathgroup-outx@smc.vnet.net
 - Delivered-to: mathgroup-newsendx@smc.vnet.net
 - References: <kph81g$2fc$1@smc.vnet.net>
 
Am 15.06.2013 10:18, schrieb Mark Roberts:
> hello,
>     I have been stuck for decades trying to calculate the world function for
>
> ds^2=-(1+2\sigma)dv^2+2dvdr+r(r-2\sigma v)(d\theta^2+\sin(\theta)^2d\phi^2)
> \phi=\n(1-2\sigma v/r)/2
> R_{ab}=2\phi_a\phi_b
>
> one gets elliptic functions if one try direct method,  The trouble with
> approximations is that it is hard to tell if they converge.....
>
> bye,
Did you try Zimmerman/Olness chapter 10 methods in
http://library.wolfram.com/infocenter/Books/4539
The other simple way is to use the geometrical Lagrangian method
Define the Lagrangian
Lagrangian =1/2 ds2 /. dphi-> D[(1-2\sigma v/r)/2, v] dv + D[(1-2\sigma 
v/r)/2, r] dr
and
momenta = {Pv -> D[Lagrangian,dv],
  Pr-> D[Lagrangian,dr],
  Ptheta -> D[L,dtheta} }
Then prepare all variables with a time argument [t] and read the table 
of Christoffel symbols off from the Euler-Lagrange equations for geodesics
D[pv/.momenta, t] -D[L,dv[t]] == 0
and calulate Riemann and Ricci.
-- 
Roland Franzius