question
- To: mathgroup at smc.vnet.net
 - Subject: [mg132523] question
 - From: "Hagwood, Charles R" <charles.hagwood at nist.gov>
 - Date: Sat, 5 Apr 2014 01:48:54 -0400 (EDT)
 - Delivered-to: l-mathgroup@mail-archive0.wolfram.com
 - Delivered-to: l-mathgroup@wolfram.com
 - Delivered-to: mathgroup-outx@smc.vnet.net
 - Delivered-to: mathgroup-newsendx@smc.vnet.net
 
I am so sick of Mathematica.  It no longer seems to be a  package to do applied work, but more for the university types.  I have spent several hours using several combinations
of ?NumberQ  in the following code, but still I get an error.  Last weekend I spend several hours using FunctionExpand to get results I can read.
Any help appreciated.
r1=1;
r2=2;
beta2[t_]:={r1*Cos[2*Pi*t],r2*Sin[2*Pi*t]}
beta1[t_]:=beta2[t+4.8*t^2*(t-1)^2]
q2[t_]:=
FunctionExpand[beta2'[t]/Sqrt[Norm[beta2'[t]]],Assumptions->t\[Element] Reals && beta2'\[Element]Vectors[2,Reals]]
q1[s_]:=FunctionExpand[
beta1'[s]/Sqrt[Norm[beta1'[s]]],Assumptions->s\[Element] Reals&& beta2'\[Element]Vectors[2,Reals]]
a[t_, z_] := 2*q1[t].q2'[z] // FunctionExpand
b[t_, z_] := q1[t].q2[z] // FunctionExpand
c[t_, z_] := 2*q1'[t].q2[z] // FunctionExpand
F1[t_, z_] := c[t, z]/b[t, z]
F2[t_, z_] := a[t, z]/b[t, z]
factor1[s_, z_] := Exp[-NIntegrate[F2[s, u], {u, 0, z}]]
factor2[s_, z_] := Exp[NIntegrate[F2[s, u], {u, 0, z}]]
g[s_, z_?NumberQ] :=  NIntegrate[factor2[s, tau]*F1[s, tau], {tau, 0, z}]
y[s_, z_] := factor1[s, z]*g[s, z]
y[.2, .3]
I get the error
NIntegrate::nlim: _u_ = _tau_ is not a valid limit of integration
- Follow-Ups:
- Re: question
- From: Bob Hanlon <hanlonr357@gmail.com>
 
 - Re: question
- From: Murray Eisenberg <murray@math.umass.edu>
 
 - Re: question
- From: Sseziwa Mukasa <mukasa@gmail.com>
 
 
 - Re: question