question
- To: mathgroup at smc.vnet.net
- Subject: [mg132523] question
- From: "Hagwood, Charles R" <charles.hagwood at nist.gov>
- Date: Sat, 5 Apr 2014 01:48:54 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
I am so sick of Mathematica. It no longer seems to be a package to do applied work, but more for the university types. I have spent several hours using several combinations of ?NumberQ in the following code, but still I get an error. Last weekend I spend several hours using FunctionExpand to get results I can read. Any help appreciated. r1=1; r2=2; beta2[t_]:={r1*Cos[2*Pi*t],r2*Sin[2*Pi*t]} beta1[t_]:=beta2[t+4.8*t^2*(t-1)^2] q2[t_]:= FunctionExpand[beta2'[t]/Sqrt[Norm[beta2'[t]]],Assumptions->t\[Element] Reals && beta2'\[Element]Vectors[2,Reals]] q1[s_]:=FunctionExpand[ beta1'[s]/Sqrt[Norm[beta1'[s]]],Assumptions->s\[Element] Reals&& beta2'\[Element]Vectors[2,Reals]] a[t_, z_] := 2*q1[t].q2'[z] // FunctionExpand b[t_, z_] := q1[t].q2[z] // FunctionExpand c[t_, z_] := 2*q1'[t].q2[z] // FunctionExpand F1[t_, z_] := c[t, z]/b[t, z] F2[t_, z_] := a[t, z]/b[t, z] factor1[s_, z_] := Exp[-NIntegrate[F2[s, u], {u, 0, z}]] factor2[s_, z_] := Exp[NIntegrate[F2[s, u], {u, 0, z}]] g[s_, z_?NumberQ] := NIntegrate[factor2[s, tau]*F1[s, tau], {tau, 0, z}] y[s_, z_] := factor1[s, z]*g[s, z] y[.2, .3] I get the error NIntegrate::nlim: _u_ = _tau_ is not a valid limit of integration
- Follow-Ups:
- Re: question
- From: Bob Hanlon <hanlonr357@gmail.com>
- Re: question
- From: Murray Eisenberg <murray@math.umass.edu>
- Re: question
- From: Sseziwa Mukasa <mukasa@gmail.com>
- Re: question