Re: Inverse function solution
- To: mathgroup at smc.vnet.net
- Subject: [mg132651] Re: Inverse function solution
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Tue, 29 Apr 2014 01:32:50 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <20140428014444.9FBD16A4E@smc.vnet.net>
$Version "9.0 for Mac OS X x86 (64-bit) (January 24, 2013)" sol = Assuming[ {-1 <= x <= 1, -1 <= y <= 1, C[1] == 0, C[2] == 0}, Solve[{x == Cos[u], y == Cos[u + v]}, {u, v}] // Simplify] {{u -> ArcTan[x, -Sqrt[1 - x^2]], v -> ArcTan[Sqrt[1 - x^2]*(x*y - Sqrt[(-1 + x^2)*(-1 + y^2)]), y - x^2*y + x*Sqrt[(-1 + x^2)*(-1 + y^2)]]}, {u -> ArcTan[x, -Sqrt[1 - x^2]], v -> ArcTan[Sqrt[1 - x^2]*(x*y + Sqrt[(-1 + x^2)*(-1 + y^2)]), y - x^2*y - x*Sqrt[(-1 + x^2)*(-1 + y^2)]]}, {u -> ArcTan[x, Sqrt[1 - x^2]], v -> ArcTan[x*y - Sqrt[(-1 + x^2)*(-1 + y^2)], -((y - x^2*y + x*Sqrt[(-1 + x^2)*(-1 + y^2)])/ Sqrt[1 - x^2])]}, {u -> ArcTan[x, Sqrt[1 - x^2]], v -> ArcTan[Sqrt[1 - x^2]*(x*y + Sqrt[(-1 + x^2)*(-1 + y^2)]), (-1 + x^2)*y + x*Sqrt[(-1 + x^2)*(-1 + y^2)]]}} Bob Hanlon On Sun, Apr 27, 2014 at 9:44 PM, Narasimham <mathma18 at gmail.com> wrote: > Solve[ {x == Cos[u], y == Cos[u + v] }, {u, v} ] > > Its closed/analytic solution is not possible, even numerically. > > The known solutions are ellipses from sine waves with a phase difference, > having x^2, x y and y^2 terms, as also sketched in Lissajous curves: > > ParametricPlot[{Cos[u], Cos[u + v]}, {u, -Pi, Pi}, {v, -Pi, Pi}] > > Can there be a work around? > > Narasimham > >
- References:
- Inverse function solution
- From: Narasimham <mathma18@gmail.com>
- Inverse function solution