Re: Inverse function solution
- To: mathgroup at smc.vnet.net
- Subject: [mg132652] Re: Inverse function solution
- From: Roland Franzius <roland.franzius at uos.de>
- Date: Tue, 29 Apr 2014 01:33:11 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <ljkbqu$1u1$1@smc.vnet.net>
Am 28.04.2014 03:45, schrieb Narasimham: > Solve[ {x == Cos[u], y == Cos[u + v] }, {u, v} ] > > Its closed/analytic solution is not possible, even numerically. > > The known solutions are ellipses from sine waves with a phase difference, having x^2, x y and y^2 terms, as also sketched in Lissajous curves: > > ParametricPlot[{Cos[u], Cos[u + v]}, {u, -Pi, Pi}, {v, -Pi, Pi}] > > Can there be a work around? > Yes, replace trigonometric functions by rationals of exponentials. {x == Cos[u], y == Cos[u + v]} // TrigExpand // TrigToExp {x == E^(-I u)/2 + E^(I u)/2, y == 1/2 E^(-I u - I v) + 1/2 E^(I u + I v)} Solve[ {2 x == q + 1/q, 2 y == p q + 1/(p q)}, {q, p}] q-> Exp[I u], p-> Exp[I v] -- Roland Franzius