Re: Mathematica: Weibull distribution fnc.
- To: mathgroup at smc.vnet.net
- Subject: [mg5331] Re: [mg5309] Mathematica: Weibull distribution fnc.
- From: BobHanlon at aol.com
- Date: Wed, 27 Nov 1996 01:47:46 -0500
- Sender: owner-wri-mathgroup at wolfram.com
This shows how to work with Weibull distribution. Bob Hanlon (Col, USAF (Retired)) ______________________________________ In[1]:= Needs["Statistics`ContinuousDistributions`"] Needs["Statistics`DiscreteDistributions`"] n /: Negative[n] = False; n /: IntegerQ[n] = True; Off[General::spell1, General::intinit] Let the number of failures, X, be a Poisson process with mean (mu t) where mu is given by In[6]:= mu = (1/beta) (t/beta)^(alpha - 1); In[7]:= PDF[PoissonDistribution[mu t], n] // Simplify Out[7]= t alpha n ((----) ) beta ----------------- alpha (t/beta) E n! Let T be the time until the first failure. Then Pr{T <= t} = 1 - Pr{T > t} = 1 - PDF[PoissonDistribution[mu t], 0] In[8]:= cdf = 1 - PDF[PoissonDistribution[mu t], 0] Out[8]= -1 + alpha -((t (t/beta) )/beta) 1 - E The PDF for T is then In[9]:= pdf = D[cdf, t] // Simplify Out[9]= t alpha alpha (----) beta ----------------- alpha (t/beta) E t In[10]:= PDF[WeibullDistribution[alpha, beta], t] - pdf == 0 // PowerExpand Out[10]= True Consequently, T has a Weibull distribution. In[11]:= Domain[WeibullDistribution[]] Out[11]= {0, Infinity} The exponential and Rayleigh distributions are special cases of the Weibull distribution with alpha equal to 1 and 2 respectively: In[12]:= PDF[WeibullDistribution[1, 1/lambda], x] == PDF[ExponentialDistribution[lambda], x] Out[12]= True In[13]:= PDF[WeibullDistribution[2, Sqrt[2] sigma], x] == PDF[RayleighDistribution[sigma], x] Out[13]= True In[14]:= Mean[WeibullDistribution[alpha, beta]] Out[14]= 1 beta Gamma[1 + -----] alpha In[15]:= Variance[WeibullDistribution[alpha, beta]] Out[15]= 2 1 2 2 beta (-Gamma[1 + -----] + Gamma[1 + -----]) alpha alpha Generalized moment: In[16]:= Integrate[x^t PDF[WeibullDistribution[alpha, beta], x], {x, 0, Infinity}] // PowerExpand Out[16]= t t beta Gamma[1 + -----] alpha FORWARDED MESSAGE: Subj: [mg5309] Mathematica: Weibull distribution fnc. From: riglinbd at ml.wpafb.af.mil To: mathgroup at smc.vnet.net X-From: riglinbd at ml.wpafb.af.mil (Brian) To: mathgroup at smc.vnet.net I am trying to employ a Weibull distribution in one of the notebooks I am working on. However, Mathematica provides scant if any information on how to use this function. Could some one with more experience than I please enlighten me as to how the Weibull distribution function found in the Statistics'ContinuousDistribution package is used.