Re: GroebnerBasis
- To: mathgroup at smc.vnet.net
- Subject: [mg5762] Re: GroebnerBasis
- From: Daniel Lichtblau <danl>
- Date: Tue, 14 Jan 1997 10:42:35 -0500
- Organization: wolfram.com
- Sender: owner-wri-mathgroup at wolfram.com
Here are a few data points. The first is an example test from the text by Cox, Little, and O'Shea. The second comes from an article by Steve Czapor. The third is from the "sugar-cube" article re pair selection stragegies for Groebner basis computation (ISSAC '91). The fourth is some flavor of the Trinks problem, now fairly standard in the literature. I ran all these on the same machine, a pentium pro (200mz). In[2]:= GroebnerBasis[{x^5+y^4+z^3-1, x^3+y^2+z^2-1},{x,y,z}];//Timing Out[2]= {0.12 Second, Null} In[3]:= $Version Out[3]= Linux 3.0 (October 4, 1996) In[6]:= GroebnerBasis[{8*x^2 -2*x*y-6*x*z+3*x+3*y^2-7*y*z+10*y+10*z^2-8*z-4, 10*x^2-2*x*y+6*x*z-6*x+9*y^2-y*z-4*y-2*z^2+5*z-9, 5*x^2+8*x*y+4*x*z+8*x+9*y^2-6*y*z+2*y-z^2-7*z+5}, {x,y,z}]; // Timing Out[6]= {0.1 Second, Null} In[8]:= GroebnerBasis[{x^31 - x^6 - x - y, x^8 - z, x^10 - t}, {x,y,z,t}]; // Timing Out[8]= {0.32 Second, Null} In[9]:= GroebnerBasis[{45*p+35*s-165*b-36, 35*p+40*z+25*t-27*s, 15*w+25*p*s+30*z-18*t-165*b^2, -9*w+15*p*t+20*z*s, w*p+2*z*t-11*b^3, 99*w-11*s*b+3*b^2}, {b,t,s,w,p,z}]; // Timing Out[9]= {8.05 Second, Null} vs. In[3]:= GroebnerBasis[{x^5+y^4+z^3-1, x^3+y^2+z^2-1},{x,y,z}];//Timing Out[3]= {3.72 Second, Null} In[4]:= $Version Out[4]= Linux 2.2 (June 3, 1995) In[5]:= GroebnerBasis[{8*x^2 -2*x*y-6*x*z+3*x+3*y^2-7*y*z+10*y+10*z^2-8*z-4, 10*x^2-2*x*y+6*x*z-6*x+9*y^2-y*z-4*y-2*z^2+5*z-9, 5*x^2+8*x*y+4*x*z+8*x+9*y^2-6*y*z+2*y-z^2-7*z+5}, {x,y,z}]//Timing Interrupt> a Out[5]= $Aborted (* it cranked a few minutes at least *) In[8]:= GroebnerBasis[{x^31 - x^6 - x - y, x^8 - z, x^10 - t}, {x,y,z,t}]; // Timing Interrupt> a Out[8]= $Aborted (* also hung *) (* I won't even try the last example *) For more 3.0 timings and other pertinent info, you might check the "GroebnerBasis in Mathematica 3.0" article in the Fall '96 issue of The Mathematica Journal. Other articles explain many of the other various improvements to version 3.0. Daniel Lichtblau Wolfram Research danl at wolfram.com