Re: Points to Funciton
- To: mathgroup at smc.vnet.net
- Subject: [mg8663] Re: Points to Funciton
- From: Daniel Lichtblau <danl>
- Date: Mon, 15 Sep 1997 02:48:51 -0400
- Organization: Wolfram Research, Inc.
- Sender: owner-wri-mathgroup at wolfram.com
MJ.Stone at solaris.cc.vt.edu wrote: > > If I have a series of coordinates, is it possible to use mathematica > to find a function that will satisfy these coordinates? If so, how? In Mathematica one can use InterpolatingPolynomial. In[4]:= ??InterpolatingPolynomial InterpolatingPolynomial[data, var] gives a polynomial in the variable var which provides an exact fit to a list of data. The data can have the forms {{x1, f1}, {x2, f2}, ... } or {f1, f2, ... }, where in the second case, the xi are taken to have values 1, 2, ... . The fi can be replaced by {fi, dfi, ddfi, ... }, specifying derivatives at the points xi. Attributes[InterpolatingPolynomial] = {Protected} For example, In[5]:= InterpolatingPolynomial[{{-2,5}, {1,4}, {6,2}, {8,-7}, {9,1}}, x] 1 1 97 73 (-8 + x) Out[5]= 5 + (-(-) + (-(---) + (-(----) + -----------) (-6 + x)) (-1 + x)) 3 120 1680 1232 > (2 + x) In[6]:= Expand[%] 2 3 4 782 6103 x 13407 x 1093 x 73 x Out[6]= -(---) + ------ + -------- - ------- + ----- 385 1320 6160 1320 1232 Daniel Lichtblau Wolfram Research danl at wolfram.com