Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
1997
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1997

[Date Index] [Thread Index] [Author Index]

Search the Archive

Mathematica, Assumptions and Abramowitz & Stegun

  • To: mathgroup at smc.vnet.net
  • Subject: [mg8496] Mathematica, Assumptions and Abramowitz & Stegun
  • From: Paul E Howland <PEHowland at dera.gov.uk>
  • Date: Tue, 2 Sep 1997 16:15:44 -0400
  • Organization: DERA (Malvern)
  • Sender: owner-wri-mathgroup at wolfram.com

--------------7C63BC940BB8A56C31D5986E

I've been playing with the new Assumptions option for Integrate in
Mathematica v3,
and comparing the results of it with the integral given in equation
3.3.26 of Abromowitz and Stegun, p.12:

  Integrate[1/Sqrt[(a+b x)(c+d x)],x]

The attached notebook indicates the results of my efforts, which are
clearly at odds with those given by Abramowitz and Stegun.  Am I missing
something, or is Mathematica getting it wrong, or are the assumptions
simply too complex?  Can anyone from Wolfram offer any guidance on the
scope of the Assumptions option?

As a matter of interest, I tried the same integral and assumptions in
MapleV R4, using the assume() command.  Maple too returned results at
odds with Abramowitz and Stegun, and sometimes at odds with Mathematica!

Words of wisdom anyone?

Paul

Paul E Howland MEng CEng MIEE            Room BY209
Senior Scientist                         DERA (Malvern)
Land Systems Sector                      St Andrews Road
Defence Evaluation & Research Agency     Malvern
tel. +44-(0)1684-895767                  Worcestershire
fax. +44-(0)1684-896315                  UK

Email PEHowland at dera.gov.uk
Web Site http://www.dera.gov.uk


--------------7C63BC940BB8A56C31D5986E

KCoqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioq
KioqKioqKioqKioqKioqKioqDQoNCiAgICAgICAgICAgICAgICAgICAgTWF0aGVtYXRpY2Et
Q29tcGF0aWJsZSBOb3RlYm9vaw0KDQpUaGlzIG5vdGVib29rIGNhbiBiZSB1c2VkIG9uIGFu
eSBjb21wdXRlciBzeXN0ZW0gd2l0aCBNYXRoZW1hdGljYSAzLjAsDQpNYXRoUmVhZGVyIDMu
MCwgb3IgYW55IGNvbXBhdGlibGUgYXBwbGljYXRpb24uIFRoZSBkYXRhIGZvciB0aGUgbm90
ZWJvb2sgDQpzdGFydHMgd2l0aCB0aGUgbGluZSBvZiBzdGFycyBhYm92ZS4NCg0KVG8gZ2V0
IHRoZSBub3RlYm9vayBpbnRvIGEgTWF0aGVtYXRpY2EtY29tcGF0aWJsZSBhcHBsaWNhdGlv
biwgZG8gb25lIG9mIA0KdGhlIGZvbGxvd2luZzoNCg0KKiBTYXZlIHRoZSBkYXRhIHN0YXJ0
aW5nIHdpdGggdGhlIGxpbmUgb2Ygc3RhcnMgYWJvdmUgaW50byBhIGZpbGUNCiAgd2l0aCBh
IG5hbWUgZW5kaW5nIGluIC5uYiwgdGhlbiBvcGVuIHRoZSBmaWxlIGluc2lkZSB0aGUgYXBw
bGljYXRpb247DQoNCiogQ29weSB0aGUgZGF0YSBzdGFydGluZyB3aXRoIHRoZSBsaW5lIG9m
IHN0YXJzIGFib3ZlIHRvIHRoZQ0KICBjbGlwYm9hcmQsIHRoZW4gdXNlIHRoZSBQYXN0ZSBt
ZW51IGNvbW1hbmQgaW5zaWRlIHRoZSBhcHBsaWNhdGlvbi4NCg0KRGF0YSBmb3Igbm90ZWJv
b2tzIGNvbnRhaW5zIG9ubHkgcHJpbnRhYmxlIDctYml0IEFTQ0lJIGFuZCBjYW4gYmUNCnNl
bnQgZGlyZWN0bHkgaW4gZW1haWwgb3IgdGhyb3VnaCBmdHAgaW4gdGV4dCBtb2RlLiAgTmV3
bGluZXMgY2FuIGJlDQpDUiwgTEYgb3IgQ1JMRiAoVW5peCwgTWFjaW50b3NoIG9yIE1TLURP
UyBzdHlsZSkuDQoNCk5PVEU6IElmIHlvdSBtb2RpZnkgdGhlIGRhdGEgZm9yIHRoaXMgbm90
ZWJvb2sgbm90IGluIGEgTWF0aGVtYXRpY2EtDQpjb21wYXRpYmxlIGFwcGxpY2F0aW9uLCB5
b3UgbXVzdCBkZWxldGUgdGhlIGxpbmUgYmVsb3cgY29udGFpbmluZyB0aGUgDQp3b3JkIENh
Y2hlSUQsIG90aGVyd2lzZSBNYXRoZW1hdGljYS1jb21wYXRpYmxlIGFwcGxpY2F0aW9ucyBt
YXkgdHJ5IHRvIA0KdXNlIGludmFsaWQgY2FjaGUgZGF0YS4NCg0KRm9yIG1vcmUgaW5mb3Jt
YXRpb24gb24gbm90ZWJvb2tzIGFuZCBNYXRoZW1hdGljYS1jb21wYXRpYmxlIA0KYXBwbGlj
YXRpb25zLCBjb250YWN0IFdvbGZyYW0gUmVzZWFyY2g6DQogIHdlYjogaHR0cDovL3d3dy53
b2xmcmFtLmNvbQ0KICBlbWFpbDogaW5mb0B3b2xmcmFtLmNvbQ0KICBwaG9uZTogKzEtMjE3
LTM5OC0wNzAwIChVLlMuKQ0KDQpOb3RlYm9vayByZWFkZXIgYXBwbGljYXRpb25zIGFyZSBh
dmFpbGFibGUgZnJlZSBvZiBjaGFyZ2UgZnJvbSANCldvbGZyYW0gUmVzZWFyY2guDQoqKioq
KioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioq
KioqKioqKioqKioqKikNCg0KKCpDYWNoZUlEOiAyMzIqKQ0KDQoNCigqTm90ZWJvb2tGaWxl
TGluZUJyZWFrVGVzdA0KTm90ZWJvb2tGaWxlTGluZUJyZWFrVGVzdCopDQooKk5vdGVib29r
T3B0aW9uc1Bvc2l0aW9uWyAgICAgIDM1NzMsICAgICAgICAxMjBdKikNCigqTm90ZWJvb2tP
dXRsaW5lUG9zaXRpb25bICAgICAgNDIyMSwgICAgICAgIDE0M10qKQ0KKCogIENlbGxUYWdz
SW5kZXhQb3NpdGlvblsgICAgICA0MTc3LCAgICAgICAgMTM5XSopDQooKldpbmRvd0ZyYW1l
LT5Ob3JtYWwqKQ0KDQoNCg0KTm90ZWJvb2tbew0KDQpDZWxsW0NlbGxHcm91cERhdGFbew0K
Q2VsbFsiU2VlIEFicmFtb3dpdHogYW5kIFN0ZWd1biwgcC4xMiwgZXFuIDMuMy4yNiIsICJU
aXRsZSJdLA0KDQpDZWxsW1RleHREYXRhW3sNCiAgIkkgZG9uJ3Qga25vdyB3aGV0aGVyICIs
DQogIFN0eWxlQm94WyJNYXRoZW1hdGljYSIsDQogICAgRm9udFNsYW50LT4iSXRhbGljIl0s
DQogICIgaXMgcmlnaHQsIG9yIEFicm9tb3dpdHogYW5kIFN0ZWd1biwgYnV0IHRoZXkncmUg
ZGlmZmVyZW50IVxuQXJlIHNvbWUgb2YgXA0KdGhlIGxhdGVyIGFzc3VtcHRpb25zIHRvbyBt
dWNoIGZvciAiLA0KICBTdHlsZUJveFsiTWF0aGVtYXRpY2EiLA0KICAgIEZvbnRTbGFudC0+
Ikl0YWxpYyJdLA0KICAiPyAgVGhlIHNlY29uZCBhc3N1bXB0aW9uIGxvb2tzIHNpbXBsZSBl
bm91Z2ggdGhvdWdoLCBidXQgdGhlIHJlc3VsdCBpcyBcDQpzdGlsbCBkaWZmZXJlbnQuIg0K
fV0sICJUZXh0Il0sDQoNCkNlbGxbQ2VsbEdyb3VwRGF0YVt7DQoNCkNlbGxbQm94RGF0YVsN
CiAgICBcKEludGVncmF0ZVsxL1NxcnRbXCgoYSArIGJcIHgpXCkgXCgoYyArIGRcIHgpXCld
LCBcIHgsIFxuDQogICAgICAgIEFzc3VtcHRpb25zIFxbUnVsZV0ge2IqZFwgIDwgMH1dXCAg
Ly8gUG93ZXJFeHBhbmRcKV0sICJJbnB1dCJdLA0KDQpDZWxsW0JveERhdGFbDQogICAgXChM
b2dbDQogICAgICAgIDJcIFxAXChhICsgYlwgeFwpXCBcQFwoYyArIGRcIHhcKSArIA0KICAg
ICAgICAgIFwoYlwgYyArIGFcIGQgKyAyXCBiXCBkXCB4XClcL1woXEBiXCBcQGRcKV1cL1wo
XEBiXCBcQGRcKVwpXSwgDQogICJPdXRwdXQiXQ0KfSwgT3BlbiAgXV0sDQoNCkNlbGxbQ2Vs
bEdyb3VwRGF0YVt7DQoNCkNlbGxbQm94RGF0YVsNCiAgICBcKEludGVncmF0ZVsxL1NxcnRb
XCgoYSArIGJcIHgpXCkgXCgoYyArIGRcIHgpXCldLCBcIHgsIFxuDQogICAgICAgIEFzc3Vt
cHRpb25zIFxbUnVsZV0ge2IgPiAwLCBkXCAgPCAwfV1cICAvLyBQb3dlckV4cGFuZFwpXSwg
IklucHV0Il0sDQoNCkNlbGxbQm94RGF0YVsNCiAgICBcKExvZ1sNCiAgICAgICAgMlwgXEBc
KGEgKyBiXCB4XClcIFxAXChjICsgZFwgeFwpICsgDQogICAgICAgICAgXChiXCBjICsgYVwg
ZCArIDJcIGJcIGRcIHhcKVwvXChcQGJcIFxAZFwpXVwvXChcQGJcIFxAZFwpXCldLCANCiAg
Ik91dHB1dCJdDQp9LCBPcGVuICBdXSwNCg0KQ2VsbFtDZWxsR3JvdXBEYXRhW3sNCg0KQ2Vs
bFtCb3hEYXRhWw0KICAgIFwoSW50ZWdyYXRlWzEvU3FydFtcKChhICsgYlwgeClcKSBcKChj
ICsgZFwgeClcKV0sIFwgeCwgXG4NCiAgICAgICAgQXNzdW1wdGlvbnMgXFtSdWxlXSB7ZCBc
KChhZCAtIGJjKVwpIDwgMH1dXCAgLy8gUG93ZXJFeHBhbmRcKV0sIA0KICAiSW5wdXQiXSwN
Cg0KQ2VsbFtCb3hEYXRhWw0KICAgIFwoTG9nWw0KICAgICAgICAyXCBcQFwoYSArIGJcIHhc
KVwgXEBcKGMgKyBkXCB4XCkgKyANCiAgICAgICAgICBcKGJcIGMgKyBhXCBkICsgMlwgYlwg
ZFwgeFwpXC9cKFxAYlwgXEBkXCldXC9cKFxAYlwgXEBkXClcKV0sIA0KICAiT3V0cHV0Il0N
Cn0sIE9wZW4gIF1dLA0KDQpDZWxsW0NlbGxHcm91cERhdGFbew0KDQpDZWxsW0JveERhdGFb
DQogICAgXChJbnRlZ3JhdGVbMS9TcXJ0W1woKGEgKyBiXCB4KVwpIFwoKGMgKyBkXCB4KVwp
XSwgXCB4LCBcbg0KICAgICAgICBBc3N1bXB0aW9ucyBcW1J1bGVdIHtkIFwoKGFkIC0gYmMp
XCkgPiAwfV1cICAvLyBQb3dlckV4cGFuZFwpXSwgDQogICJJbnB1dCJdLA0KDQpDZWxsW0Jv
eERhdGFbDQogICAgXChMb2dbDQogICAgICAgIDJcIFxAXChhICsgYlwgeFwpXCBcQFwoYyAr
IGRcIHhcKSArIA0KICAgICAgICAgIFwoYlwgYyArIGFcIGQgKyAyXCBiXCBkXCB4XClcL1wo
XEBiXCBcQGRcKV1cL1woXEBiXCBcQGRcKVwpXSwgDQogICJPdXRwdXQiXQ0KfSwgT3BlbiAg
XV0NCn0sIE9wZW4gIF1dDQp9LA0KRnJvbnRFbmRWZXJzaW9uLT4iTWljcm9zb2Z0IFdpbmRv
d3MgMy4wIiwNClNjcmVlblJlY3RhbmdsZS0+e3swLCA4MDB9LCB7MCwgNTcxfX0sDQpXaW5k
b3dTaXplLT57NTAwLCA0NjR9LA0KV2luZG93TWFyZ2lucy0+e3swLCBBdXRvbWF0aWN9LCB7
QXV0b21hdGljLCAwfX0NCl0NCg0KDQooKioqKioqKioqKioqKioqKioqKioqKioqKioqKioq
KioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioNCkNhY2hlZCBkYXRh
IGZvbGxvd3MuICBJZiB5b3UgZWRpdCB0aGlzIE5vdGVib29rIGZpbGUgZGlyZWN0bHksIG5v
dCB1c2luZw0KTWF0aGVtYXRpY2EsIHlvdSBtdXN0IHJlbW92ZSB0aGUgbGluZSBjb250YWlu
aW5nIENhY2hlSUQgYXQgdGhlIHRvcCBvZiANCnRoZSBmaWxlLiAgVGhlIGNhY2hlIGRhdGEg
d2lsbCB0aGVuIGJlIHJlY3JlYXRlZCB3aGVuIHlvdSBzYXZlIHRoaXMgZmlsZSANCmZyb20g
d2l0aGluIE1hdGhlbWF0aWNhLg0KKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioq
KioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKiopDQoNCigqQ2VsbFRhZ3NP
dXRsaW5lDQpDZWxsVGFnc0luZGV4LT57fQ0KKikNCg0KKCpDZWxsVGFnc0luZGV4DQpDZWxs
VGFnc0luZGV4LT57fQ0KKikNCg0KKCpOb3RlYm9va0ZpbGVPdXRsaW5lDQpOb3RlYm9va1t7
DQoNCkNlbGxbQ2VsbEdyb3VwRGF0YVt7DQpDZWxsWzE3MzEsIDUxLCA2MCwgMCwgMTUwLCAi
VGl0bGUiXSwNCkNlbGxbMTc5NCwgNTMsIDM2OCwgMTAsIDcxLCAiVGV4dCJdLA0KDQpDZWxs
W0NlbGxHcm91cERhdGFbew0KQ2VsbFsyMTg3LCA2NywgMTQ3LCAyLCA1MCwgIklucHV0Il0s
DQpDZWxsWzIzMzcsIDcxLCAxNTQsIDQsIDYzLCAiT3V0cHV0Il0NCn0sIE9wZW4gIF1dLA0K
DQpDZWxsW0NlbGxHcm91cERhdGFbew0KQ2VsbFsyNTI4LCA4MCwgMTUyLCAyLCA1MCwgIklu
cHV0Il0sDQpDZWxsWzI2ODMsIDg0LCAxNTQsIDQsIDYzLCAiT3V0cHV0Il0NCn0sIE9wZW4g
IF1dLA0KDQpDZWxsW0NlbGxHcm91cERhdGFbew0KQ2VsbFsyODc0LCA5MywgMTYwLCAzLCA1
MCwgIklucHV0Il0sDQpDZWxsWzMwMzcsIDk4LCAxNTQsIDQsIDYzLCAiT3V0cHV0Il0NCn0s
IE9wZW4gIF1dLA0KDQpDZWxsW0NlbGxHcm91cERhdGFbew0KQ2VsbFszMjI4LCAxMDcsIDE2
MCwgMywgNTAsICJJbnB1dCJdLA0KQ2VsbFszMzkxLCAxMTIsIDE1NCwgNCwgNjMsICJPdXRw
dXQiXQ0KfSwgT3BlbiAgXV0NCn0sIE9wZW4gIF1dDQp9DQpdDQoqKQ0KDQoNCg0KDQooKioq
KioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioq
KioqKioqKioqKioqKioNCkVuZCBvZiBNYXRoZW1hdGljYSBOb3RlYm9vayBmaWxlLg0KKioq
KioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioq
KioqKioqKioqKioqKiopDQoNCg==
--------------7C63BC940BB8A56C31D5986E--


  • Prev by Date: Limit bug in Calculus\Limit ???
  • Next by Date: Correct TeXForm of matrices, customizing TeX output.
  • Previous by thread: Re: Limit bug in Calculus\Limit ???
  • Next by thread: Re: Mathematica, Assumptions and Abramowitz & Stegun