Re: laplace transform
- To: mathgroup at smc.vnet.net
- Subject: [mg8571] Re: [mg8520] laplace transform
- From: "w.meeussen" <meeussen.vdmcc at vandemoortele.be>
- Date: Sat, 6 Sep 1997 23:16:32 -0400
- Sender: owner-wri-mathgroup at wolfram.com
At 02:20 4-09-97 -0400, Jaime Y. Hernandez Jr. wrote: >Dear Mathgroup Members, > >I'd like to clarify my question regarding the Inverse Laplace transform >question I raised. I'm actually solving something like this, > > In[2]:=InverseLaplaceTransform[1/(s^k+a),s,t] > > Out[2]=\!\(InverseLaplaceTransform[1\/\(a + s\^k\), s, t]\) > >This is actual mathematica output. Mathematica always returns what I input >no matter what value (fractional value between 0 and 1) of k I place, >except if you change s^k with Sqrt[s], i.e. k=1/2. If one places k=0.5 it >does not work. Is the result for using Sqrt[s] only a formula within >mathematica? Anyway, if you have any suggestions on how to solve such a >problem, again I'd be very grateful. >And sorry about the lack of details earlier. > >Jaime > > > for fractional s I found nothing new, but for integer s there are solutions to be found after tinkering: (* along the way, I hit on what seems a bug in FullSimplify that needs verification *) Also, how impossible would it be to write a "Induction" package that automates the procedure a human does : incrementing a parameter (like n below) and "guess" the progression? check it out: In[1]:= <<Calculus`LaplaceTransform` In[2]:= InverseLaplaceTransform[1/(s^k+a),s,t] Out[2]= 1 InverseLaplaceTransform[------, s, t] k a + s In[50]:= Clear[testeven,testodd] In[51]:= testeven[n_] := (-1)^(1/n)*Sum[((-1)^((k - 1)/n)/E^((-1)^(k/n)*a^(1/n)*t) - (-1)^((k - 1)/n)*E^((-1)^(k/n)*a^(1/n)*t))/ (n*a^(1 - 1/n)), {k, 1, n, 2}] In[52]:= testodd[n_] := (a^(-1 + 1/n)*(E^(-(a^(1/n)*t)) + Sum[(-1)^(k/n + k)*Exp[(-1)^( k/n + k + 1)*a^(1/n)*t], {k, 1, n - 1}]))/n In[53]:= checkit=FullSimplify[testeven[n]] (* this simplification seems to go wrong !!! *) Out[53]= 1/n 1/n 1/n -1 + 1/n 2 (-1) a t -1 + n (-1) a (-1 + E ) (1 + Floor[------]) 2 -(--------------------------------------------------------------) 1/n 1/n (-1) a t E n In[54]:= InverseLaplaceTransform[1/(s^k+a),s,t]/.k->2; Simplify[testeven[2]-%] Out[55]= 0 In[56]:= InverseLaplaceTransform[1/(s^k+a),s,t]/.k->3; Simplify[testodd[3]-%] Out[57]= 0 In[58]:= InverseLaplaceTransform[1/(s^k+a),s,t]/.k->4; Simplify[testeven[4]-%] Out[59]= 0 In[60]:= InverseLaplaceTransform[1/(s^k+a),s,t]/.k->5; Simplify[testodd[5]-%] Out[61]= 0 In[62]:= Table[{testeven[n],check},{a,1,2},{t,1,2},{n,6}]//N//Chop//TableForm Out[62]//TableForm= -2.3504 -2.3504 -7.25372 -7.25372 0.841471 0.841471 0.909297 0.909297 -0.400067 - 0.481238 I 0.766801 - 0.962476 I -1.47567 - 0.398749 I 1.88447 - 0.797498 I 0.166468 0.166468 - 0.991669 I 1.30799 1.30799 - 1.73474 I -0.235043 - 0.24274 I -0.201004 - 1.25272 I -0.726783 - 0.943507 I 0.800543 - 3.00598 I 0.00833331 -0.408236 - 1.01019 I 0.266615 -0.0547257 - 2.86354 I -7.25372 -7.25372 -54.5798 -54.5798 0.698456 0.698456 0.21784 0.21784 -0.357 - 0.337363 I 0.647332 - 0.674726 I -1.83001 + 0.0109456 I 1.52504 + 0.0218911 I 0.16627 0.16627 - 0.695329 I 1.28274 1.28274 - 1.04107 I -0.16295 - 0.179241 I -0.0946172 - 0.8482 I -0.568425 - 0.712088 I 0.917239 - 2.06479 I 0.00833328 -0.240382 - 0.659902 I 0.266564 0.180615 - 1.97796 I In[65]:= LaplaceTransform[testeven[4],t,s]//Simplify Out[65]= 1 ------ 4 a + s In[67]:= LaplaceTransform[testodd[5],t,s]//FullSimplify Out[67]= 1 ------ 5 a + s wouter. Dr. Wouter L. J. MEEUSSEN eu000949 at pophost.eunet.be w.meeussen.vdmcc at vandemoortele.be