Extracting parameters from NonlinearFit
- To: mathgroup@smc.vnet.net
- Subject: [mg11850] Extracting parameters from NonlinearFit
- From: Paul Hanson <Paul.Hanson@colorado.edu>
- Date: Wed, 1 Apr 1998 00:35:53 -0500
- Organization: University of Colorado at Boulder
Recently I began writing a program to do a monte carlo simulation of an NMR experiment. The whole routine is attached (I hope that works.) The problem is this: I perform a NonlinearFit utilizing an exponential function of the form Exp[-a*x]. The nonlinear fit gives me back an equation, something like 1*E(-a*x). I want to extract the a parameter out of the equation and do two things with it. Because I am performing this simulation several (thousand) times, I want to know the standard deviation of the a parameters. Second, I would like to get an average of the terms (without having to use the last two lines of my code). If anyone out there could help me out, I would greatly appreciate it; I'm really stuck. (PS, if you try to run my code, you may want to change the number of iterations to 10 or so. 10000 iterations takes a couple of hours.) Jeff Wank Dept of Chemistry & Biochemistry University of Colorado at Boulder jrw@atlantis.colorado.edu (303) 492-8085 (*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 3.0, MathReader 3.0, or any compatible application. The data for the notebook starts with the line of stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 3390, 96]*) (*NotebookOutlinePosition[ 4248, 126]*) (* CellTagsIndexPosition[ 4204, 122]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["\<\ (*Begin Cell*) (* This routine takes a set of times, t, and fits a curve of the form \ y=init*exp(-bx) where b is the rate constant (lamda) *)\ \>", "Input", AspectRatioFixed->True], Cell[CellGroupData[{ Cell[BoxData[{ \(Needs["\<Statistics`ContinuousDistributions`\>"]\), \(Needs["\<Statistics`NonlinearFit`\>"]\), \(Needs["\<Graphics`Colors`\>"]\), \(Clear[t, init, di, a, ndist, n, values, newlist, aone, lamda1, loga]\n \n (*time\ values*) \), \(t = { .004, .006, .008, .010, .012, .016, .020, .024, .028}; \n \n (*\ initial\ \((0\ time)\)\ value\ *) \ninit = 5.855\ 10\^7; \ \n \n (*\ error\ in\ normalized\ intensity, \ as\ computed\ from\ 10\ ms\ data\ repetitions\ *) \ndi = .00757; \n \n (*a\ normal\ distribution\ of\ numbers\ *) \n ndist = NormalDistribution[0, di\ init]; \n \n (*\ initial\ value\ for\ lamda, \ the\ rate\ constant\ *) \n lamda = 49.95; \n\n (*\ number\ of\ iterations\ *) \nn = 1; \n\n a[i_, t_] := init\ Exp[\(-lamda\)\ t] + Random[ndist]; \n values = \((a[#1, t]&)\)/@Table[i, {i, 1, n}]; \n newlist = \((Transpose[{t, #1}]&)\)/@values; \n \n (*fitting\ the\ data*) \n\n\t lamda1\ = \ \((NonlinearFit[newlist[\([#]\)], init*Exp[\(-a\)*x], {x}, {a, c}]&)\)/@ Table[i, {i, 1, n}]; \n\n\tApply[Times, \ lamda1/init]\), \("\<divide the b term by n for your lambda\>"\)}], "Input", AspectRatioFixed->True], Cell[BoxData[ \(0.999999999999999822`\ E\^\(\(-52.4031624602439904`\)\ x\)\)], "Output"], Cell[BoxData[ \("divide the b term by n for your lambda"\)], "Output"] }, Open ]] }, Open ]] }, FrontEndVersion->"X 3.0", ScreenRectangle->{{0, 1280}, {0, 1024}}, WindowToolbars->"RulerBar", CellGrouping->Manual, WindowSize->{779, 642}, WindowMargins->{{172, Automatic}, {Automatic, 98}}, PrivateNotebookOptions->{"ColorPalette"->{RGBColor, -1}}, ShowCellLabel->True, ShowCellTags->False, RenderingOptions->{"ObjectDithering"->True, "RasterDithering"->False} ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1731, 51, 195, 9, 102, "Input"], Cell[CellGroupData[{ Cell[1951, 64, 1239, 22, 540, "Input"], Cell[3193, 88, 92, 1, 28, "Output"], Cell[3288, 91, 74, 1, 27, "Output"] }, Open ]] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)