Re: FresnelS & FresnelC
- To: mathgroup at smc.vnet.net
- Subject: [mg13823] Re: FresnelS & FresnelC
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Sat, 29 Aug 1998 04:41:04 -0400
- Organization: University of Western Australia
- References: <6s5mf7$cc5@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Steven T. Hatton wrote: > > I copied directly from *Mathematica By Example* in PDF format, pg 220, > Revised First Ed.. I do not get the same result as the author. Does > any body else get ~pi ? I get 1.24012 for the numerical result, and > the same thing the book says for the symbolic result. > > IN[ ]= value=Integrate[Cos[x^2-y^2],{x,0,Sqrt[Pi]},{y,0,Sqrt[Pi]}] > > OUT [ ]= (Pi (FresnelC[Sqrt[2]]^2 + FresnelS[Sqrt[2]]^2 )) / 2 > > IN[ ]= N[value] > > OUT[ ]= 3.14159 I don't have Mathematica By Example (nor the PDF version). However, the values you obtain for the symbolic and numeric integration are consistent: In[1]:= value=Integrate[Cos[x^2-y^2],{x,0,Sqrt[Pi]},{y,0,Sqrt[Pi]}] Out[1]= 1 2 2 - Pi (FresnelC[Sqrt[2]] + FresnelS[Sqrt[2]] ) 2 In[2]:= N[value] Out[2]= 1.24012 In[3]:= NIntegrate[Cos[x^2-y^2],{x,0,Sqrt[Pi]},{y,0,Sqrt[Pi]}] Out[3]= 1.24012 Cheers, Paul ____________________________________________________________________ Paul Abbott Phone: +61-8-9380-2734 Department of Physics Fax: +61-8-9380-1014 The University of Western Australia Nedlands WA 6907 mailto:paul at physics.uwa.edu.au AUSTRALIA http://www.physics.uwa.edu.au/~paul God IS a weakly left-handed dice player ____________________________________________________________________