Re: Implicit differentiation
- To: mathgroup@smc.vnet.net
- Subject: [mg11399] Re: [mg11372] Implicit differentiation
- From: Bob Hanlon <BobHanlon@aol.com>
- Date: Sun, 8 Mar 1998 20:13:21 -0500
eqn = x^3 + y^3 == 2; soln = Solve[eqn, y][[1]]; NestList[Dt[#1, x] & , soln, 3] // Simplify \!\(\*FormBox[ RowBox[{"{", RowBox[{\({y \[Rule] \@\(2 - x\^3\)\%3}\), ",", RowBox[{"{", RowBox[{ FractionBox[\(\[DifferentialD]y\), \(\[DifferentialD]x\), MultilineFunction->None], "\[Rule]", \(-\(x\^2\/\((2 - x\^3)\)\^\(2/3\)\)\)}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[\(\[DifferentialD]\^2 y\), \(\[DifferentialD]x\^2\), MultilineFunction->None], "\[Rule]", \(-\(\(4\ x\)\/\((2 - x\^3)\)\^\(5/3\)\)\)}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[\(\[DifferentialD]\^3 y\), \(\[DifferentialD]x\^3\), MultilineFunction->None], "\[Rule]", \(-\(\(8\ \((2\ x\^3 + 1)\)\)\/\((2 - x\^3)\)\^\(8/3\)\)\)}], "}"}]}], "}"}], TraditionalForm]\) Bob Hanlon In a message dated 3/7/98 4:26:26 AM, mavalosjr@aol.com wrote: >Any ideas how I can plug into mathematica to find the 2nd or third >derivative of an implicit function? The first derivative is okay. I'm >using( Example): in:eq= x^3 + y^3 ==2 > in: step1= Dt[eq,x] > in: step2=Solve[step1, Dt[y,x] (* This >gives me the first derivative*). Thanks again for any suggestions. >Mavalosjr@aol.com >Manuel Avalos