Re: Interpolation function objects
- To: mathgroup@smc.vnet.net
- Subject: [mg11736] Re: Interpolation function objects
- From: Paul Abbott <paul@physics.uwa.edu.au>
- Date: Thu, 26 Mar 1998 03:09:04 -0500
- Organization: University of Western Australia
- References: <6f1mph$fb6@smc.vnet.net>
Sean Ross wrote: > If I define > > f= Interpolation[data] > > Then I can Plot[f[x],{x,xmin,xmax}] etc and f behaves like a regular > function. > > If I try and specify the argument in the definition of f as in > > f[x_,n_Integer]:=Interpolation[data,InterpolationOrder->n] or > > f[#,n_Integer]:=Interpolation[data,InterpolationOrder->n] or > > f[x_]=Evaluate[Interpolation[data]][a]/.a->x or > > f[n_Integer]:=Interpolation[data,InterpolationOrder->n] The last one, which is the one I'd use (modified to includ dynmaic programming), works fine: In[1]:= data = Table[N[{x, Sin[x]}], {x, 0, 2*Pi, Pi/6}]; In[2]:= f[n_Integer] := f[n] = Interpolation[data, InterpolationOrder -> n] In[3]:= Plot[f[4][x], {x, 0, 2*Pi}]; Cheers, Paul ____________________________________________________________________ Paul Abbott Phone: +61-8-9380-2734 Department of Physics Fax: +61-8-9380-1014 The University of Western Australia Nedlands WA 6907 mailto:paul@physics.uwa.edu.au AUSTRALIA http://www.pd.uwa.edu.au/~paul God IS a weakly left-handed dice player ____________________________________________________________________