A problem with CDF
- To: mathgroup@smc.vnet.net
- Subject: [mg11695] A problem with CDF
- From: Mr C W Mark WONG <bsroq@csv.warwick.ac.uk>
- Date: Sat, 21 Mar 1998 18:35:28 -0500
- Organization: University of Warwick, UK
Hi I have a problem using CDF in Mathematica. I am trying to evaluate a multivarivate integral with dimension >=2. It seems to me that Mathematica can't handle the problem well with a special correlation matrix, sigma (m3 as follows) when dim >2, but it is working fine when dim=2. Is it a limitation of Mathematica? or do I overlook a mistake? Thank you Mark ********************************************* In[16]:= <<Statistics`MultinormalDistribution` In[17]:= m3=Table[If[i<=j,Sqrt[i/j],Sqrt[j/i]],{i,3},{j,3}] 1 1 1 2 1 2 Out[17]= {{1, -------, -------}, {-------, 1, Sqrt[-]}, {-------, Sqrt[-], 1}} Sqrt[2] Sqrt[3] Sqrt[2] 3 Sqrt[3] 3 In[18]:= dist=MultinormalDistribution[{0, 0,0},m3] Out[18]= MultinormalDistribution[{0, 0, 0}, 1 1 1 1 2 > {{1, -------, -------}, {-------, <<2>>}, {-------, Sqrt[-], 1}}] Sqrt[2] Sqrt[3] Sqrt[2] Sqrt[3] 3 In[20]:= CDF[dist,{0,0,0}] 1 Power::infy: Infinite expression - encountered. 0 NIntegrate::inum: Integrand 0.00603870503532375 (1. + Erf[ComplexInfinity]) is not numerical at {Statistics`MultinormalDistribution`Private`z$72} = {-1.}. NIntegrate::inum: Integrand 0.00603870503532375 (1. + Erf[ComplexInfinity]) is not numerical at {Statistics`MultinormalDistribution`Private`z$72} = {-1.}. Out[20]= NIntegrate[ Statistics`MultinormalDistribution`Private`product$72 > -------------------------------------------------------------, 2 Statistics`MultinormalDistribution`Private`z$72 /2 1/2 E (2 Pi) > {Statistics`MultinormalDistribution`Private`z$72, -Infinity, Infinity}, > AccuracyGoal -> Statistics`MultinormalDistribution`Private`accgoal$72] ************************************************