4DSlicer

• To: mathgroup at smc.vnet.net
• Subject: [mg14904] 4DSlicer
• From: SJR <4ea at geocities.com>
• Date: Wed, 25 Nov 1998 17:48:25 -0500
• Sender: owner-wri-mathgroup at wolfram.com

```Hi everyone, I'm new to the list and fairly new to Mathematica as well,
although I feel that I'm pretty proficient with it. My problem is;

which is supposed to be able to take 3D slices of 4D objects and
display them. The problem is that there are no instructions as to how
to install the Add On or what packages to load. The files that came
with it are .nb files so that there's really nothing for me to do
besides "look at" them. Here's an "example"

cross3[v1_, v2_]  := (Det[{IdentityMatrix[3], v1, v2}]); cross[v1_, v2_,
v3_]  := (Det[{IdentityMatrix[4], v1, v2, v3}]);

Clear[a,b,c,d,n1,n2,n3,n4];
{a,b,c,d} = {{0,1,0},{0,-1,0},{1,0,2^.5},{-1,0,2^.5}}; n1 =
cross3[b-a,c-a];
n2 = cross3[c-b,d-b];
n3 = cross3[d-a,c-a];
n4 = cross3[b-a,d-a];
total = {-n1,n2,n3,n4};
cons = {-n1.a,n2.b,n3.a,n4.a};
tetrahedron = Transpose[{total,cons}];

total = {{1,0,0},{0,1,0},{0,0,1},{-1,0,0},{0,-1,0},{0,0,-1}}; cons =
{1,1,1,1,1,1};
cube = Transpose[{total,cons}];

Clear[a,b,c,d,f];
a = {1,0,-.35355,0};b={-.5,.866,-.35355,0};c={-.5,-.866,-.35355,0};
d={0,0,1.06066,0};e={0,0,0,1.3693};
n1 = cross[d-a,c-a,b-a];
n2 = cross[e-a,d-a,b-a];
n3 = cross[e-a,c-a,b-a];
n4 = cross[e-a,d-a,c-a];
n5 = cross[e-b,d-b,c-b];
total = {-n1,-n2,n3,n4,-n5};
cons = {n1.a,-n2.a,n3.a,n4.a,-n5.b}; simplex = Transpose[{total,cons}];

Clear[a,b,c,d,f];
a =
{1,0,-.35355,0};b={-.5,0.866025403784439,-.35355,0};c={-.5,-0.866025403784439,-.35355,0};
d={0,0,1.06066,0};e={0,0,0,1.3693};
n1 = cross[d-a,c-a,b-a];
n2 = cross[e-a,d-a,b-a];
n3 = cross[e-a,c-a,b-a];
n4 = cross[e-a,d-a,c-a];
n5 = cross[e-b,d-b,c-b];
n6 = cross[N[(c+a)/2]-(f=N[(b+a)/2]), N[(d+a)/2]-f, N[(e+a)/2]-f]; n7 =
cross[N[(c+b)/2]-(g=N[(a+b)/2]), N[(d+b)/2]-g, N[(e+b)/2]-g]; n8 =
cross[N[(b+c)/2]-(h=N[(a+c)/2]), N[(d+c)/2]-h, N[(e+c)/2]-h]; n9 =
cross[N[(b+d)/2]-(i=N[(a+d)/2]), N[(c+d)/2]-i, N[(e+d)/2]-i]; n10 =
cross[N[(b+e)/2]-(j=N[(a+e)/2]), N[(c+e)/2]-j, N[(d+e)/2]-j]; total =
{-n1,-n2,n3,n4,-n5,-n6,n7,-n8,n9,-n10}; cons =
{n1.a,-n2.a,n3.a,n4.a,-n5.b,-n6.f, n7.g, -n8.h, n9.i, -n10.j};
truncsimp = Transpose[{total,cons}];

box =
{{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1},{-1,0,0,0},{0,-1,0,0},{0,0,-1,0},{0,0,0,-1}};
boxcons = {1,1,1,1,1,1,1,1};
hypercube = Transpose[{box, boxcons}];
v0={1,1,1,1};v1={1,1,1,-1};v2={1,1,-1,1};v3={1,1,-1,-1};v4={1,-1,1,1};
v5={1,-1,1,-1};v6={1,-1,-1,1};v7={1,-1,-1,-1}
v8={-1,1,1,1};v9={-1,1,1,-1};v10={-1,1,-1,1};
v11={-1,1,-1,-1};v12={-1,-1,1,1};v13={-1,-1,1,-1};v14={-1,-1,-1,1};v15={-1,-1,-1,-1};
otot = {v0,v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15}; ocons =
{.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5}; octaplex =
Transpose[{otot,ocons}];

truncube = Flatten[{hypercube,octaplex}, 1]; Clear[v1, v2, v3, v4, v5,
n1, n2, n3, n4, n5]; {v1,v2,v3,v4,v5} =
{{1,0,0},{0,1,0},{-1,0,0},{0,-1,0},{0,0,1}}; n1 =
Append[cross[v2-v5,v3-v5],0];
n2 = Append[cross[v3-v5,v4-v5],0];
n3 = Append[cross[v1-v5,v2-v5],0];
n4 = Append[cross[v1-v5,v4-v5],0];
n5 = Append[cross[v2-v1,v3-v1],0];
n6 = {0,0,0,1};
pyramidtot = {n1,n2,n3,-n4,-n5,n6,-n6}; pyracons =
{n1.{0,0,1,0},n2.{0,0,1,0},n3.{0,0,1,0},-n4.{0,0,1,0},-n5.{1,0,0,0},0,0};
pyramid = Transpose[{pyramidtot, pyracons}];

but when I try to evaluate this, I get tons of error messages, as I do
with any of the given examples I try to evaluate. I'm completely
baffled. I was wondering if maybe anyone has used 4DSlicer before and
could tell me what to do. Thanks.

-Salvatore Richicih

```

• Prev by Date: Plot Image Size
• Next by Date: evaluating bounded functions
• Previous by thread: Re: Plot Image Size
• Next by thread: evaluating bounded functions