Re: "LOLLIPOP" PLOTS FOR DISCRETE SEQUENCES
- To: mathgroup at smc.vnet.net
- Subject: [mg19279] Re: [mg19214] "LOLLIPOP" PLOTS FOR DISCRETE SEQUENCES
- From: "Tomas Garza" <tgarza at mail.internet.com.mx>
- Date: Thu, 12 Aug 1999 01:24:29 -0400
- Sender: owner-wri-mathgroup at wolfram.com
Maya Lemiel [lemiel at bangkok.com] wrote: > I'm thinking of representing discrete-time sequences by means of > "lollipop" > plots, that is, vertical lines with filled circles on top. Is there a > Mathermatica function to meet this need or else can anybody out there > suggest a straightforward way to implement it. Suppose you have a sequence of points listA, e.g.: In[1]:= listA = Transpose[{{1, 2, 3}, {1, 4, 9}}] Out[1]= {{1, 1}, {2, 4}, {3, 9}} The corresponding abscissas are: In[2]:= abscs = Transpose[{{1, 2, 3}, {0, 0, 0}}] Out[2]= {{1, 0}, {2, 0}, {3, 0}} The lines joining the abscissas with the points are: In[3]:= Line /@ Transpose[{abscs, listA}] Out[3]= {Line[{{1, 0}, {1, 1}}], Line[{{2, 0}, {2, 4}}], Line[{{3, 0}, {3, 9}}]} The "lollipops" can be obtained like this: In[4]:= Show[Graphics[Line /@ Transpose[{abscs, listA}]], Epilog -> Table[Disk[listA[[j]], 0.035], {j, 1, 3}], AspectRatio -> Automatic] Tomas Garza Mexico City