Re: "LOLLIPOP" PLOTS FOR DISCRETE SEQUENCES
- To: mathgroup at smc.vnet.net
- Subject: [mg19279] Re: [mg19214] "LOLLIPOP" PLOTS FOR DISCRETE SEQUENCES
- From: "Tomas Garza" <tgarza at mail.internet.com.mx>
- Date: Thu, 12 Aug 1999 01:24:29 -0400
- Sender: owner-wri-mathgroup at wolfram.com
Maya Lemiel [lemiel at bangkok.com] wrote:
> I'm thinking of representing discrete-time sequences by means of
> "lollipop"
> plots, that is, vertical lines with filled circles on top. Is there a
> Mathermatica function to meet this need or else can anybody out there
> suggest a straightforward way to implement it.
Suppose you have a sequence of points listA, e.g.:
In[1]:=
listA = Transpose[{{1, 2, 3}, {1, 4, 9}}]
Out[1]=
{{1, 1}, {2, 4}, {3, 9}}
The corresponding abscissas are:
In[2]:=
abscs = Transpose[{{1, 2, 3}, {0, 0, 0}}]
Out[2]=
{{1, 0}, {2, 0}, {3, 0}}
The lines joining the abscissas with the points are:
In[3]:=
Line /@ Transpose[{abscs, listA}]
Out[3]=
{Line[{{1, 0}, {1, 1}}], Line[{{2, 0}, {2, 4}}], Line[{{3, 0}, {3, 9}}]}
The "lollipops" can be obtained like this:
In[4]:=
Show[Graphics[Line /@ Transpose[{abscs, listA}]],
Epilog -> Table[Disk[listA[[j]], 0.035], {j, 1, 3}],
AspectRatio -> Automatic]
Tomas Garza
Mexico City