Re: trig asymptotics
- To: mathgroup at smc.vnet.net
- Subject: [mg18433] Re: [mg15583] trig asymptotics
- From: "Andrzej Kozlowski" <andrzej at tuins.ac.jp>
- Date: Wed, 7 Jul 1999 00:11:22 -0400
- Sender: owner-wri-mathgroup at wolfram.com
Series[1/2*ArcTan[1/x]*ArcSinh[1/x], {x, 0, 1}] /. x -> 1/n or, if you prefer In[4]:= Normal[Series[1/2*ArcTan[1/x]*ArcSinh[1/x], {x, 0, 1}] /. x -> 1/n]//PowerExpand Out[4]= -Log[2] - Log[n] 1 ---------------- + - Pi (Log[2] + Log[n]) 2 n 4 -- Andrzej Kozlowski Toyama International University JAPAN http://sigma.tuins.ac.jp http://eri2.tuins.ac.jp ---------- >From: Arnold Knopfmacher <arnoldk at gauss.cam.wits.ac.za> To: mathgroup at smc.vnet.net >To: mathgroup at smc.vnet.net >Subject: [mg18433] [mg15583] trig asymptotics >Date: Thu, Jan 28, 1999, 6:23 PM > > Hi All > > How do I get an asymptotic expansion for large n of the function (1/2) > ArcTan[n] ArcSinh[n]? The command > > Series[(1/2) ArcTan[n] ArcSinh[n], {n, Infinity, 2}] does not work.. > > The output I expect is > (Log[n]+Log[2]) Pi/4 -(Log[2]/2+Log[n]/2)/n +O[1/n^2]. Thank you > > Arnold Knopfmacher > Wiwwatersrand University >