Re: in center of a triangle
- To: mathgroup at smc.vnet.net
- Subject: [mg19628] Re: in center of a triangle
- From: phbrf at t-online.de (Peter Breitfeld)
- Date: Mon, 6 Sep 1999 04:20:43 -0400
- Organization: das ist ein breites Feld ...
- References: <7qqbur$4gv@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Tom De Vries <tdevries at mail2.westworld.ca> schrieb: > Hello! > > I was wondering if anyone has seen or has written a Mathematica procedure to > generate the incenter of a triangle given the vertices of the triangle. The > incenter of a triangle is the point at which the angle bisectors meet. From > this point you can draw an inscribed circle in the triangle. > > Thanks for any help you could offer on this!! > > Tom De Vries > Edmonton, Alberta, Canada > Maybe you look for something like this: Winkelhalb[A_List,B_List,C_List]:= Module[{Wa,Wb,Wc,W,u,v,s,t}, u=(A-C)/Sqrt[(A-C).(A-C)]; v=(B-C)/Sqrt[(B-C).(B-C)]; Wc=Flatten[A+(B-A)s/.Solve[C+(u+v)/2 t==A+(B-A)s,{s,t}]]; u=(A-B)/Sqrt[(A-B).(A-B)]; v=(C-B)/Sqrt[(C-B).(C-B)]; Wb=Flatten[A+(C-A)s/.Solve[B+(u+v)/2 t==A+(C-A)s,{s,t}]]; u=(C-A)/Sqrt[(C-A).(C-A)]; v=(B-A)/Sqrt[(B-A).(B-A)]; Wa=Flatten[B+(B-C)s/.Solve[A+(u+v)/2 t==B+(B-C)s,{s,t}]]; W=Flatten[A+t(Wa-A)/.Solve[A+t(Wa-A)==B+s(Wb-B),{s,t}]]; {W,Wa,Wb,Wc} ] This function returns the incenter W of the triangel with vertices A, B and C and the points Wa, Wb, Wc where the where the bisectors meet the opposite sides of the triangle, so Wa ist the section point of the bisector through A with BC. Peter -- =--=--=--=--=--=--=--=--=--=--=--=--= http://home.t-online.de/home/phbrf =--= =--= Peter Breitfeld, Saulgau, Germany PGP public key: 08548045 =--=--=