Re: Demonstrate that 1==-1
- To: mathgroup at smc.vnet.net
- Subject: [mg23197] Re: [mg23171] Demonstrate that 1==-1
- From: Daniel Lichtblau <danl at dragonfly.wolfram.com>
- Date: Mon, 24 Apr 2000 01:12:05 -0400 (EDT)
- References: <200004210348.XAA19777@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Alberto Verga wrote: > > Compute > Integrate[(1 + a/E^(I*u))/(-1 + a/E^(I*u)), {u, 0, 2*Pi}] > > Mathematica gives -2Pi > > Now multiply the numerator and the denominator by -1 > > Integrate[(-1 - a/E^(I*u))/(1 - a/E^(I*u)), {u, 0, 2*Pi}] > > Mathematica gets 2*Pi > > This is only possible if 1==-1 > > Is this another bug in Limit? > > Alberto Verga > irphe - Marseille No, it is a bug in Integrate. To see this, try: Unprotect[Limit]; Limit[a:___] := Null /; (Print[{a}]; False) Integrate[(-1 - a/E^(I*u))/(1 - a/E^(I*u)), {u, 0, 2*Pi}] Integrate[(1 + a/E^(I*u))/(-1 + a/E^(I*u)), {u, 0, 2*Pi}] You will find that Limit is never called. I will look into the Integrate problem. Daniel Lichtblau Wolfram Research
- References:
- Demonstrate that 1==-1
- From: "Alberto Verga" <verga@marius.univ-mrs.fr>
- Demonstrate that 1==-1