Re: How to avoid complex exponents?
- To: mathgroup at smc.vnet.net
- Subject: [mg24947] Re: [mg24931] How to avoid complex exponents?
- From: "Peter Chan" <y6k at hotmail.com>
- Date: Thu, 24 Aug 2000 05:08:18 -0400 (EDT)
- References: <50.9ef5b3d.26d46f90@aol.com>
- Sender: owner-wri-mathgroup at wolfram.com
Hello Bob, Thank you for your help. Your solution gives: ((C[1] + C[2])*Cos[(Sqrt[3]*x)/2])/E^(x/2) But the general solution should be: C[3]*Cos[(Sqrt[3]*x)/2])*E^(-x/2) + C[4]*Sin[(Sqrt[3]*x)/2])*E^(-x/2) Peter > > In a message dated 8/22/2000 4:42:25 PM, y6k at hotmail.com writes: > > >What is the simplest way to avoid the complex exponents, i.e. > >exp((-1)^(1/3)) > >and exp((-1)^(2/3)), given by Mathematica 4.0 in the solution of the > >following > >differential equation? > > > >Thanks. > > > >----------------------------------------------------- > >Mathematica 4.0 : > > > >In[1]:= DSolve[y''[x]+y'[x]+y[x]==0,y[x],x] > > > > 2/3 > > C[1] (-1) x > >Out[1]= {{y[x] -> ---------- + E C[2]}} > > 1/3 > > (-1) x > > E > > > >----------------------------------------------------- > > > > (y[x] /. DSolve[y''[x] + y'[x] + y[x] == 0, y[x], x][[1]]) // Re // > ComplexExpand // Simplify > > ((C[1] + C[2])*Cos[(Sqrt[3]*x)/2])/E^(x/2) > > > Bob Hanlon >