MathGroup Archive 2000

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: How to avoid complex exponents?


Use Im similarly to the way Bob Hanlon used Re on the complex
exponential, then form the linear combination?

Peter Chan wrote:
> 
> Hello Bob,
> 
> Thank you for your help.
> 
> Your solution gives:
> ((C[1] + C[2])*Cos[(Sqrt[3]*x)/2])/E^(x/2)
> 
> But the general solution should be:
> C[3]*Cos[(Sqrt[3]*x)/2])*E^(-x/2) + C[4]*Sin[(Sqrt[3]*x)/2])*E^(-x/2)
> 
> Peter
> 
> >
> > In a message dated 8/22/2000 4:42:25 PM, y6k at hotmail.com writes:
> >
> > >What is the simplest way to avoid the complex exponents, i.e.
> > >exp((-1)^(1/3))
> > >and exp((-1)^(2/3)), given by Mathematica 4.0 in the solution of the
> > >following
> > >differential equation?
> > >
> > >Thanks.
> > >
> > >-----------------------------------------------------
> > >Mathematica 4.0 :
> > >
> > >In[1]:= DSolve[y''[x]+y'[x]+y[x]==0,y[x],x]
> > >
> > >                                    2/3
> > >                     C[1]       (-1)    x
> > >Out[1]= {{y[x] -> ---------- + E          C[2]}}
> > >                       1/3
> > >                   (-1)    x
> > >                  E
> > >
> > >-----------------------------------------------------
> > >
> >
> > (y[x] /. DSolve[y''[x] + y'[x] + y[x] == 0, y[x], x][[1]]) // Re //
> >     ComplexExpand // Simplify
> >
> > ((C[1] + C[2])*Cos[(Sqrt[3]*x)/2])/E^(x/2)
> >
> >
> > Bob Hanlon
> >

-- 
Murray Eisenberg                     murray at math.umass.edu
Mathematics & Statistics Dept.       phone 413 549-1020 (H)
Univ. of Massachusetts                     413 545-2859 (W)
Amherst, MA 01003-4515


  • Prev by Date: Functional or rules-based equivalent for procedural program
  • Next by Date: Math, MathKernel ... and others
  • Previous by thread: Re: How to avoid complex exponents?
  • Next by thread: CellLabelMargins in 4.0.2