       Re: Simplifying expressions, and Alpha

• To: mathgroup at smc.vnet.net
• Subject: [mg31352] Re: [mg31336] Simplifying expressions, and Alpha
• From: BobHanlon at aol.com
• Date: Tue, 30 Oct 2001 04:35:36 -0500 (EST)
• Sender: owner-wri-mathgroup at wolfram.com

```In a message dated 2001/10/29 2:53:24 AM, msdawy at hotmail.com writes:

>i have 2 problems... i'd be very grateful if anyone could help me..
>1. some expressions return very complex expressions (e.g. when u solve
>a third degree equation), you get a very complex formula for the
>result. i am looking for a way to output the result in a
>human-readable format (like 2.3342218) not with many roots, and stuff
>like this, how can i do it?
>
>2. how can i find the point on a chi squared distribution where the
>CDF will be 0.995?
>

1.  Use N[Solve[]], Solve[]//N, or just NSolve[].

2.  The inverse of CDF is Quantile.

Needs["Statistics`ContinuousDistributions`"];

Quantile[ChiSquareDistribution[n], x]

2*InverseGammaRegularized[n/2, 0, x]

Quantile[ChiSquareDistribution, 0.995]

12.838156466598651

or using Solve

Solve[CDF[ChiSquareDistribution[n], q] == x, q]

{{q -> 2*InverseGammaRegularized[
n/2, 0, x]}}

Solve[CDF[ChiSquareDistribution, q] == 0.995, q]

{{q -> 12.838156466598651}}

Plot[Evaluate[Table[
CDF[ChiSquareDistribution[n], x],
{n, 1, 5, 2}]], {x, 0, 20},
PlotStyle -> Table[Hue[k/3], {k, 0, 2}],
AspectRatio -> 1];

Plot[Evaluate[Table[
Quantile[ChiSquareDistribution[n], x],
{n, 1, 5, 2}]], {x, 0, 1},
PlotStyle -> Table[Hue[k/3], {k, 0, 2}],
PlotRange -> {0, 20.5}, AspectRatio -> 1];

Bob Hanlon
Chantilly, VA  USA

```

• Prev by Date: Re: find argument of function inside long result?
• Next by Date: Re: diagonalization
• Previous by thread: Simplifying expressions, and Alpha
• Next by thread: Evaluating the Error Function of a Complex Argument