Re: RSolve
- To: mathgroup at smc.vnet.net
- Subject: [mg32874] Re: [mg32834] RSolve
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Sat, 16 Feb 2002 04:35:37 -0500 (EST)
- References: <200202140644.BAA19433@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Christophe Le Poncin-Lafitte wrote: > > Hello, > > I have a little problem with the RSolve function. > I want to solve an Ordinary differential equation, a quiet difficult, > with a development in series. > My equation : > R''[r]+(E-l*(l+1)/r^2-beta*r^(1/3))*R[r]==0 > > where E, l and beta are constant. > > Anybody knows how to proceed with Rsolve to calculate the generating > element a[n] of the development : > Sum[a[n]*r^n,n] > > Thanks a lot. > > Christophe. I do not know about obtaining a recurrence but you can use Series to get at least the first several terms of an expansion. Your differential equation has a singularity at the origin so I will expand at r=1. diffEq[func_,var_] := D[func,{var,2}] + (E-ll*(ll+1)/var^2-beta*var^(1/3))*func serbigR6 = Series[bigR[r], {r,1,6}]; We apply the differential equation. This will in effect impose relations on coefficients. seriesDE6 = diffEq[serbigR6, r]; We now truncate to a polynomial and substitute a new "variable" for powers of r-1. newser6 = Normal[seriesDE6] /. {r-1->newr} We now extract the variables of interest. vars6 = Append[Reverse[Sort[ Cases[Variables[newser6],Derivative[n_][bigR][1]]]], bigR[1]]; Take coefficients of the series terms. We will solve for them. polys6 = CoefficientList[newser6, newr] solns6 = First[Solve[polys6==0, vars6, Sort->False]]; Note that we do not expect to solve for all of them because there are two degrees of freedom (and the above Solve will give an appropriate warning message). In[50]:= InputForm[s6 = Together[vars6 /. solns6]] Out[50]//InputForm= {(-80*beta*bigR[1] - 90*beta^2*bigR[1] + 81*beta^3*bigR[1] + 126*beta*E*bigR[1] - 243*beta^2*E*bigR[1] + 243*beta*E^2*bigR[1] - 81*E^3*bigR[1] + 9720*ll*bigR[1] + 2844*beta*ll*bigR[1] + 243*beta^2*ll*bigR[1] - 3402*E*ll*bigR[1] - 486*beta*E*ll*bigR[1] + 243*E^2*ll*bigR[1] + 14418*ll^2*bigR[1] + 3087*beta*ll^2*bigR[1] + 243*beta^2*ll^2*bigR[1] - 3645*E*ll^2*bigR[1] - 486*beta*E*ll^2*bigR[1] + 243*E^2*ll^2*bigR[1] + 9477*ll^3*bigR[1] + 486*beta*ll^3*bigR[1] - 486*E*ll^3*bigR[1] + 4941*ll^4*bigR[1] + 243*beta*ll^4*bigR[1] - 243*E*ll^4*bigR[1] + 243*ll^5*bigR[1] + 81*ll^6*bigR[1] + 120*beta*Derivative[1][bigR][1] + 162*beta^2*Derivative[1][bigR][1] - 162*beta*E*Derivative[1][bigR][1] - 7776*ll*Derivative[1][bigR][1] - 810*beta*ll*Derivative[1][bigR][1] + 972*E*ll*Derivative[1][bigR][1] - 8748*ll^2*Derivative[1][bigR][1] - 810*beta*ll^2*Derivative[1][bigR][1] + 972*E*ll^2*Derivative[1][bigR][1] - 1944*ll^3*Derivative[1][bigR][1] - 972*ll^4*Derivative[1][bigR][1])/81, (10*beta*bigR[1] + 36*beta^2*bigR[1] - 36*beta*E*bigR[1] - 648*ll*bigR[1] - 180*beta*ll*bigR[1] + 216*E*ll*bigR[1] - 864*ll^2*bigR[1] - 180*beta*ll^2*bigR[1] + 216*E*ll^2*bigR[1] - 432*ll^3*bigR[1] - 216*ll^4*bigR[1] - 18*beta*Derivative[1][bigR][1] + 27*beta^2*Derivative[1][bigR][1] - 54*beta*E*Derivative[1][bigR][1] + 27*E^2*Derivative[1][bigR][1] + 486*ll*Derivative[1][bigR][1] + 54*beta*ll*Derivative[1][bigR][1] - 54*E*ll*Derivative[1][bigR][1] + 513*ll^2*Derivative[1][bigR][1] + 54*beta*ll^2*Derivative[1][bigR][1] - 54*E*ll^2*Derivative[1][bigR][1] + 54*ll^3*Derivative[1][bigR][1] + 27*ll^4*Derivative[1][bigR][1])/27, (-2*beta*bigR[1] + 9*beta^2*bigR[1] - 18*beta*E*bigR[1] + 9*E^2*bigR[1] + 54*ll*bigR[1] + 18*beta*ll*bigR[1] - 18*E*ll*bigR[1] + 63*ll^2*bigR[1] + 18*beta*ll^2*bigR[1] - 18*E*ll^2*bigR[1] + 18*ll^3*bigR[1] + 9*ll^4*bigR[1] + 6*beta*Derivative[1][bigR][1] - 36*ll*Derivative[1][bigR][1] - 36*ll^2*Derivative[1][bigR][1])/9, (beta*bigR[1] - 6*ll*bigR[1] - 6*ll^2*bigR[1] + 3*beta*Derivative[1][bigR][1] - 3*E*Derivative[1][bigR][1] + 3*ll*Derivative[1][bigR][1] + 3*ll^2*Derivative[1][bigR][1])/3, -((-beta + E - ll - ll^2)*bigR[1]), Derivative[1][bigR][1], bigR[1]} As expected, the value and first derivative are unspecified, and further derivatives are expressed in terms of them. Daniel Lichtblau Wolfram Research
- References:
- RSolve
- From: Christophe Le Poncin-Lafitte <christophe.leponcin-lafitte@obspm.fr>
- RSolve