Re: Nonlinear Programming?

• To: mathgroup at smc.vnet.net
• Subject: [mg34940] Re: [mg34939] Nonlinear Programming?
• From: Andrzej Kozlowski <andrzej at platon.c.u-tokyo.ac.jp>
• Date: Fri, 14 Jun 2002 02:38:43 -0400 (EDT)
• Sender: owner-wri-mathgroup at wolfram.com

```Yes. What's more, the constraints need not be linear. (However do not
expect great speed.)

In[9]:=
Minimize[(-x)*y, {x^2 + y^2 <= 1, x >= 0, y >= 0}, {x, y}]

Out[9]=
{-(1/2), {y -> 1/Sqrt[2], x -> 1/Sqrt[2]}}

Of course this means that the maximum is

In[10]:=
-%[[1]]

Out[10]=
1/2

at

In[11]:=
{x, y} /. %%[[2]]

Out[11]=
{1/Sqrt[2], 1/Sqrt[2]}

Andrzej Kozlowski
Toyama International University
JAPAN
http://platon.c.u-tokyo.ac.jp/andrzej/

On Thursday, June 13, 2002, at 03:38  PM, Leonard Wapner wrote:

> Is there a Mathematica function allowing me to maximize the product "xy"
> over a set of linear constraints?  The functions ConstrainedMax and
> ConstrainedMin require a linear objective function.
>
> Thanks - L
>
>
>
>

```

• Prev by Date: RE: A friendly challenge: Generalized Partition
• Next by Date: Export color bug in Mac OS X?
• Previous by thread: Nonlinear Programming?
• Next by thread: Re: Nonlinear Programming?