Re: Re: WeibullDistribution
- To: mathgroup at smc.vnet.net
- Subject: [mg42471] Re: [mg42462] Re: WeibullDistribution
- From: Dr Bob <majort at cox-internet.com>
- Date: Thu, 10 Jul 2003 03:36:54 -0400 (EDT)
- References: <bee0f9$fhd$1@smc.vnet.net> <200307091224.IAA27174@smc.vnet.net>
- Reply-to: majort at cox-internet.com
- Sender: owner-wri-mathgroup at wolfram.com
No need to follow that link to get the Weibull PDF: << Statistics`ContinuousDistributions` PDF[WeibullDistribution[a, 1], x] Bobby On Wed, 9 Jul 2003 08:24:34 -0400 (EDT), goh tat kean <gohtk at rocketmail.com> wrote: > Dear Kee, > > The formula for the probability density function of the general > Weibull distribution is given in: > > http://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm > > Consider a Weibull PDF with scale parameter of 1 and shape parameter > of 7, you can first define an equation, > > << Statistics`NonlinearFit` > << Statistics`ContinuousDistributions` > Clear[weif]; > weif[x_] := a x^(a - 1) Exp[-(x^a)] > > Create some dummy data and plot out the dummy data, > > data = Table[{x, a x^(a - 1) Exp[-(x^a)] + Random[Real, {-0.2, 0.2}] /. > {a -> > 7}}, {x, > 0.1, 1.5, 0.1}]; > ListPlot[data] > > Fit the dummy data by using NonlinearRegress to obtain a and b, > > NonlinearRegress[data, PDF[WeibullDistribution[a, b], x], x, {a, b}, > MaxIterations -> 1000000] > > Good luck! > > Regards, > tat kean > > ce.choa.phen.kee at philips.com wrote in message > news:<bee0f9$fhd$1 at smc.vnet.net>... >> Hi all, >> >> I have a set of data, but how can I find out the A and B in >> WeibullDistribution[ A , B ] ? >> >> There isn't much informaion regarding the WeibullDistribution provided >> in the Help Browser. Anyone pls help??? >> >> Thanks in advance. >> >> regards, >> kee > > -- majort at cox-internet.com Bobby R. Treat
- References:
- Re: WeibullDistribution
- From: gohtk@rocketmail.com (goh tat kean)
- Re: WeibullDistribution