Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2003
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2003

[Date Index] [Thread Index] [Author Index]

Search the Archive

Solve bug in Mathematica 5

  • To: mathgroup at smc.vnet.net
  • Subject: [mg44010] Solve bug in Mathematica 5
  • From: Artūras Acus <acus at itpa.lt>
  • Date: Fri, 17 Oct 2003 05:14:38 -0400 (EDT)
  • Organization: Institute of Theoretical Physics and Astronomy
  • Sender: owner-wri-mathgroup at wolfram.com

Hi,

The following example demonstrates Mathematica 5.0 "improvements"
in Solve. 

lygtys2={E^(a*k*Cot[a*k])*Subscript[A, 1] - Cos[a*k]*Subscript[A, 2] +
Sin[a*k]*Subscript[B, 2] == 0, 
 -(E^(a*k*Cot[a*k])*k*Cot[a*k]*Subscript[A, 1]) -
k*Sin[a*k]*Subscript[A, 2] - 
   k*Cos[a*k]*Subscript[B, 2] == 0, Cos[a*k]*Subscript[A, 2] +
Sin[a*k]*Subscript[B, 2] - 
   E^(a*k*Cot[a*k])*Subscript[B, 3] == 0, 
 -(k*Sin[a*k]*Subscript[A, 2]) + k*Cos[a*k]*Subscript[B, 2] - 
   E^(a*k*Cot[a*k])*k*Cot[a*k]*Subscript[B, 3] == 0}

Solve[lygtys2, {Subscript[A, 2], Subscript[B, 2], Subscript[B, 3],
Subscript[A, 1]}]

gives {0,0,0,0}, thought equations are lineary dependent. 4.1 returns
correct rezult.


  • Prev by Date: Nonlinear PDE fitting to Data
  • Next by Date: serious NDSolve bug?
  • Previous by thread: Nonlinear PDE fitting to Data
  • Next by thread: Re: Solve bug in Mathematica 5