Re: Solve bug in Mathematica 5
- To: mathgroup at smc.vnet.net
- Subject: [mg44025] Re: Solve bug in Mathematica 5
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Sat, 18 Oct 2003 03:12:16 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <bmodji$hqs$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
- Sender: owner-wri-mathgroup at wolfram.com
Hi, {0,0,0,0} *is* the correct solution. You should use Reduce[] and pic up one of the non- zero solutions. Regards Jens Artþras Acus wrote: > > Hi, > > The following example demonstrates Mathematica 5.0 "improvements" > in Solve. > > lygtys2={E^(a*k*Cot[a*k])*Subscript[A, 1] - Cos[a*k]*Subscript[A, 2] + > Sin[a*k]*Subscript[B, 2] == 0, > -(E^(a*k*Cot[a*k])*k*Cot[a*k]*Subscript[A, 1]) - > k*Sin[a*k]*Subscript[A, 2] - > k*Cos[a*k]*Subscript[B, 2] == 0, Cos[a*k]*Subscript[A, 2] + > Sin[a*k]*Subscript[B, 2] - > E^(a*k*Cot[a*k])*Subscript[B, 3] == 0, > -(k*Sin[a*k]*Subscript[A, 2]) + k*Cos[a*k]*Subscript[B, 2] - > E^(a*k*Cot[a*k])*k*Cot[a*k]*Subscript[B, 3] == 0} > > Solve[lygtys2, {Subscript[A, 2], Subscript[B, 2], Subscript[B, 3], > Subscript[A, 1]}] > > gives {0,0,0,0}, thought equations are lineary dependent. 4.1 returns > correct rezult.