Re: Solve bug in Mathematica 5
- To: mathgroup at smc.vnet.net
- Subject: [mg44021] Re: [mg44010] Solve bug in Mathematica 5
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Sat, 18 Oct 2003 03:12:14 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
On Friday, October 17, 2003, at 06:14 PM, Artūras Acus wrote: > Hi, > > The following example demonstrates Mathematica 5.0 "improvements" > in Solve. > > lygtys2={E^(a*k*Cot[a*k])*Subscript[A, 1] - Cos[a*k]*Subscript[A, 2] + > Sin[a*k]*Subscript[B, 2] == 0, > -(E^(a*k*Cot[a*k])*k*Cot[a*k]*Subscript[A, 1]) - > k*Sin[a*k]*Subscript[A, 2] - > k*Cos[a*k]*Subscript[B, 2] == 0, Cos[a*k]*Subscript[A, 2] + > Sin[a*k]*Subscript[B, 2] - > E^(a*k*Cot[a*k])*Subscript[B, 3] == 0, > -(k*Sin[a*k]*Subscript[A, 2]) + k*Cos[a*k]*Subscript[B, 2] - > E^(a*k*Cot[a*k])*k*Cot[a*k]*Subscript[B, 3] == 0} > > Solve[lygtys2, {Subscript[A, 2], Subscript[B, 2], Subscript[B, 3], > Subscript[A, 1]}] > > gives {0,0,0,0}, thought equations are lineary dependent. 4.1 returns > correct rezult. > > > If you want to see the real improvement, look at the answer you get with Reduce in v. 5 and compare it with the one version 4 returns. I agree that Solve in v.5 should do a little better with this example but actually it will give you the solution you want if you use the Rational mode instead of the default Generic: Solve[lygtys2, {Subscript[A, 2], Subscript[B, 2], Subscript[B, 3], Subscript[A, 1]}, Mode -> Rational] (long output suppressed). Andrzej Kozlowski Yokohama, Japan http://www.mimuw.edu.pl/~akoz/ http://platon.c.u-tokyo.ac.jp/andrzej/