distance between pairs of parallel lines, select two from list of length four, symbolically
- To: mathgroup at smc.vnet.net
- Subject: [mg48106] distance between pairs of parallel lines, select two from list of length four, symbolically
- From: Kai Gauer <gauerkk at uregina.ca>
- Date: Thu, 13 May 2004 00:08:44 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Hi fellow newsgroup folks! (** apologies for the lengthy post; thanks in **) (** advance for approaches at solutions **) (** mathematica_version=3.0 **) I can express a series of 4 linear_equations for plotting after assignment of coefficients as: { 2/161*(-2093 + 1/2*1*Sqrt[13*(-2 + Sqrt[533])]*(-648 - 25*Sqrt[533] + (+577 + 24*Sqrt[533])*x - 23*(+22 + Sqrt[533])*y)) == 0, 2/161*(-2093 + 1/2*1*Sqrt[13*(-2 + Sqrt[533])]*(+648 + 25*Sqrt[533] - (+577 + 24*Sqrt[533])*x + 23*(+22 + Sqrt[533])*y)) == 0, 2/161*(-2093 - 1/2*I*Sqrt[13*(+2 + Sqrt[533])]*(+648 - 25*Sqrt[533] + (-577 + 24*Sqrt[533])*x - 23*(-22 + Sqrt[533])*y)) == 0, 2/161*(-2093 + 1/2*I*Sqrt[13*(+2 + Sqrt[533])]*(+648 - 25*Sqrt[533] + (-577 + 24*Sqrt[533])*x - 23*(-22 + Sqrt[533])*y)) == 0 }. I can measure the distance between any two of these lines by selecting an (x1,y1) on one line, and computing the following: mydistance:=Abs[u*x1+v*y1+w]/Abs[Sqrt[u^2+v^2]] (** I would greatly prefer to later peel off the Abs[] from the denominator term, but in numeral form, I have to: first calculate the denominator, and then rationalize it, and then cancel anything left from the new denominator with the old numerator, having FullSimplify 'ied - I am also not even sure that I need to attach the Abs[], after reading some Linear Algebra texbooks **) The question is: how to use a similar process to get a rationalized denominator symbolic form of mydistance[a,b,c,f,g,h] (I have to re-write the u, v, w in terms of the variables above)? The general form of linear_equations would start off looking like: { (4*h^2*(-(a*b) + h^2)* (a*(-(b*c) + f^2) + b*g^2 + h*(-2*f*g + c*h)) + Sqrt[2]*E^(I/2*Arg[(a*b*c - a*f^2 - b*g^2 + 2*f*g*h - c*h^2)*(-a + b + Sqrt[(a - b)^2 + 4*h^2])]*Sign[-(a*b*h) + h^3]^2)* Sqrt[(-(a*b*h) + h^3)^2*Sqrt[(a*(-(b*c) + f^2) + b*g^2 + h*(-2*f*g + c*h))^2]]*(-(b*g) + 2*f*h + g*Sqrt[(a - b)^2 + 4*h^2] + a^2*x + 2*h^2*x + b*h*y + h*Sqrt[(a - b)^2 + 4*h^2]*y + a*(g - b*x + Sqrt[(a - b)^2 + 4*h^2]*x + h*y))*Sqrt[Abs[-a + b + Sqrt[(a - b)^2 + 4*h^2]]])/(4*(-(a*b*h) + h^3)^2) == 0, (4*h^2*(-(a*b) + h^2)* (a*(-(b*c) + f^2) + b*g^2 + h*(-2*f*g + c*h)) - Sqrt[2]*E^(I/2*Arg[(a*b*c - a*f^2 - b*g^2 + 2*f*g*h - c*h^2)*(-a + b + Sqrt[(a - b)^2 + 4*h^2])]*Sign[-(a*b*h) + h^3]^2)* Sqrt[(-(a*b*h) + h^3)^2*Sqrt[(a*(-(b*c) + f^2) + b*g^2 + h*(-2*f*g + c*h))^2]]*(-(b*g) + 2*f*h + g*Sqrt[(a - b)^2 + 4*h^2] + a^2*x + 2*h^2*x + b*h*y + h*Sqrt[(a - b)^2 + 4*h^2]*y + a*(g - b*x + Sqrt[(a - b)^2 + 4*h^2]*x + h*y))*Sqrt[Abs[-a + b + Sqrt[(a - b)^2 + 4*h^2]]])/(4*(-(a*b*h) + h^3)^2) == 0, (4*h^2*(-(a*b) + h^2)* (a*(-(b*c) + f^2) + b*g^2 + h*(-2*f*g + c*h)) + Sqrt[2]*E^(I/2*Arg[(a*(-(b*c) + f^2) + b*g^2 + h*(-2*f*g + c*h))*(+a - b + Sqrt[(a - b)^2 + 4*h^2])]*Sign[-(a*b*h) + h^3]^2)* Sqrt[(-(a*b*h) + h^3)^2*Sqrt[(a*(-(b*c) + f^2) + b*g^2 + h*(-2*f*g + c*h))^2]]*(-(b*g) + 2*f*h - g*Sqrt[(a - b)^2 + 4*h^2] + a^2*x + 2*h^2*x + b*h*y - h*Sqrt[(a - b)^2 + 4*h^2]*y + a*(g - b*x - Sqrt[(a - b)^2 + 4*h^2]*x + h*y))*Sqrt[Abs[+a - b + Sqrt[(a - b)^2 + 4*h^2]]])/(4*(-(a*b*h) + h^3)^2) == 0, (4*h^2*(-(a*b) + h^2)* (a*(-(b*c) + f^2) + b*g^2 + h*(-2*f*g + c*h)) + Sqrt[2]*E^(I/2*Arg[(a*(-(b*c) + f^2) + b*g^2 + h*(-2*f*g + c*h))*(+a - b + Sqrt[(a - b)^2 + 4*h^2])]*Sign[-(a*b*h) + h^3]^2)* Sqrt[(-(a*b*h) + h^3)^2*Sqrt[(a*(-(b*c) + f^2) + b*g^2 + h*(-2*f*g + c*h))^2]]*(+(b*g) - 2*f*h + g*Sqrt[(a - b)^2 + 4*h^2] - a^2*x - 2*h^2*x - b*h*y + h*Sqrt[(a - b)^2 + 4*h^2]*y + a*(-g + b*x + Sqrt[(a - b)^2 + 4*h^2]*x - h*y))*Sqrt[Abs[+a - b + Sqrt[(a - b)^2 + 4*h^2]]])/(4*(-(a*b*h) + h^3)^2) == 0 } But in this case, my only assignment of coefficients [a,b,c,f,g,h] occur at the mydistance function. Since mydistance can be any one (possibly more) of six operations between the 2 lines in question, how do I choose the unique positive real value of mydistance when the Abs is taken off the denominator in the form similar to the above numerical operation and assign ExpandNumerator. Notice that ExpandNumerator[3+Sqrt[5]/Sqrt[7]] reduces a rationalized denominator, but how to do this in a symbolic form? It may also help to notice that when the two real coefficient lines are returned, they appear to be parallel to one another. I also need to leave the formula in a form similar to this, and not looking like a TrigReduce[] type of equation. I'd also like to keep whatever symmetries which you see here as stable as possible. A normal approach is to sometimes subtract line1-line2 where line1: Ax+By+C==0, line2: Ax+By+D==0 to come up with |D-C|, but I tried this approach, and in some cases, wouldn't remove the x and y terms (this is "harder" to work with because of the rank 1 returmn value using linear algebra methods). Kai G. Gauer