RE: Min[], Max[]
- To: mathgroup at smc.vnet.net
- Subject: [mg48336] RE: [mg48320] Min[], Max[]
- From: "Wolf, Hartmut" <Hartmut.Wolf at t-systems.com>
- Date: Tue, 25 May 2004 07:16:52 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
We have In[4]:= Attributes[Max] Out[4]= {Flat, NumericFunction, OneIdentity, Orderless, Protected} And by definition Max[{a1, a2,...}, {b1, b2, ...}, ...] == Max[a1, a2, ..., b1, b2, ...] Min[{a1, a2,...}, {b1, b2, ...}, ...] == Min[a1, a2, ..., b1, b2, ...] Such we have element == Max[element] == Max[{element}] == Max[{element},{}] == Max[Max[{element}], Max[{}]] == the greater of element and Max[{}] for any real element this forces Max[{}] to be -Infinity. Similar for Min[{}] == Infinity. Of course then we have also In[5]:= Max[] Out[5]= -Infinity In[6]:= Min[] Out[6]= Infinity -- Hartmut Wolf >-----Original Message----- >From: Frank Brand [mailto:fank.brand at t-online.de] To: mathgroup at smc.vnet.net >Sent: Monday, May 24, 2004 6:45 AM >To: mathgroup at smc.vnet.net >Subject: [mg48336] [mg48320] Min[], Max[] > > >Dear newsgroup members, > >can anyone explain me what´s the sense in the definition of > >Min[{}]= Infinity and Max[{}]= -Infinity > >Thanks in advance >Frank > > >Prof. Dr. Frank Brand >Budapester Str. 13 >10787 Berlin > >+49 (0)30 - 25 79 36 62 >0179 - 215 58 04 > >frank.brand at t-online.de > >