100 digit base ten primes
- To: mathgroup at smc.vnet.net
- Subject: [mg52252] 100 digit base ten primes
- From: Roger Bagula <tftn at earthlink.net>
- Date: Wed, 17 Nov 2004 02:20:24 -0500 (EST)
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
Clear[a,b,m,m0,m1,m3] (* program for finding primes near 100 digits long base 10 using Mersenne seed points*) (* cryptography length primes*) (* the logically most probable way someone taught*) (* traditional number theory might use find 100 digits primes*) (* short of using a sieve to 100 decimal places*) Table[N[Log[2^Prime[n]]/Log[10]],{n,1,68}] $MaxPrecision=Floor[Log[2^Prime[68]]/Log[10]]+1 m=2^Prime[67]-1 m0=Floor[m+Log[m]^2] (m0-m)/2 m1=2^Prime[68]-1 m3=Floor[m1+Log[m1]^2] (m3-m1)/2 a=Delete[Union[Table[If[PrimeQ[n]==True,n,0],{n,m,m0,2}]],1] Dimensions[a][[1]] (* 1/Log[n] probability test*) N[Dimensions[a][[1]]/((m0-m)/2)-1/Log[m0]] b=Delete[Union[Table[If[PrimeQ[n]==True,n,0],{n,m1,m3,2}]],1] Dimensions[b][[1]] N[Dimensions[b][[1]]/((m3-m1)/2)-1/Log[m3]] PrimeQ[m+Floor[Log[m]^2/2]]==True PrimeQ[m1+Floor[Log[m1]^2/2]]==True Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : alternative email: rlbtftn at netscape.net URL : http://home.earthlink.net/~tftn