Re: 3D graphics domain
- To: mathgroup at smc.vnet.net
- Subject: [mg55806] Re: 3D graphics domain
- From: dh <dh at metrohm.ch>
- Date: Wed, 6 Apr 2005 03:12:10 -0400 (EDT)
- References: <d2tesa$qj2$1@smc.vnet.net> <d2tnns$nr$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, Bobby pointed out that in the definition of s[] the <= and >= have been wrongly replaced by =. The correct code is therefore: f[x_, y_] = -64*x + 320*(x^2) - 512*(x^3) + 256*(x^4) + 20*y - 64*x*y + 64*(x^2)*y - 4*(y^2); s[x_, y_] = If[(y <= 4*x*(1 - x)) && (y >= 4*x*(1 - 2x)) && (y >= 4*(x - 1)*(1 - 2x)), Hue[1], Hue[0.5]]; Plot3D[{f[x, y], s[x, y]}, {x, 0, 1}, {y, 0, 1}, PlotPoints -> 50] dh wrote: > Hi Dick, > you may simply plot your function on a rectangular region and color the > valid region differently. E.g.: > > f[x_, y_] = -64*x + 320*(x^2) - 512*(x^3) + 256*(x^4) + 20*y - 64*x*y + > 64*(x^2)*y - 4*(y^2); > s[x_, y_] = If[(y = 4*x*(1 - x)) && (y = 4*x*(1 - 2x)) && (y = 4*(x - > 1)*(1 - 2x)), Hue[1], Hue[0.5]]; > Plot3D[{f[x, y], s[x, y]}, {x, 0, 1}, {y, 0, 1}, PlotPoints -> 50] > > Sincerely, Daniel > > > Richard Bedient wrote: > >>Thanks to Bob and Dan for helping me get this far. Again, I've exhausted >>my Mathematica knowledge along with anything I can find in the Help >>files. I now need to take the function they found for me and graph it >>in 3D over a restricted domain. Here's the problem: >> >>Graph the function >> >>f(x,y) = -64*x + 320*(x^2) - 512*(x^3) + 256*(x^4) + 20*y - 64*x*y + >>64*(x^2)*y - 4*(y^2) >> >>over the domain: >> >>y <= 4*x*(1-x) >>y >= 4*x*(1 - 2x) >>y >= 4*(x - 1)*(1 - 2x) >> >>Thanks for any help. >> >>Dick >> > >