Re: 3D graphics domain
- To: mathgroup at smc.vnet.net
- Subject: [mg55880] Re: 3D graphics domain
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Fri, 8 Apr 2005 01:37:18 -0400 (EDT)
- Organization: The University of Western Australia
- References: <d2tesa$qj2$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
In article <d2tesa$qj2$1 at smc.vnet.net>, Richard Bedient <rbedient at hamilton.edu> wrote: > Graph the function > > f(x,y) = -64*x + 320*(x^2) - 512*(x^3) + 256*(x^4) + 20*y - 64*x*y + > 64*(x^2)*y - 4*(y^2) > > over the domain: > > y <= 4*x*(1-x) > y >= 4*x*(1 - 2x) > y >= 4*(x - 1)*(1 - 2x) David Park's solution is very nice. Just some additional comments: [1] You can use Boole to specify the region: << Calculus` ineqs[x_, y_] = y <= 4 x (1 - x) && y >= 4 x (1 - 2 x) && y >= 4 (x - 1) (1 - 2 x) region[x_, y_] = Boole[ineqs[x,y]] ContourPlot[region[x, y], {x, 0, 1}, {y, -0.1, 1.1}, Contours -> {0}, PlotPoints -> 200] [2] You can use Reduce to parameterize the region Reduce[ineqs[x, y], y] <<Graphics` DisplayTogether[ FilledPlot[{4 x (1 - 2 x), 4 x (1 - x)}, {x, 0, 1/2}], FilledPlot[{4 (x - 1) (1 - 2 x), 4 x (1 - x)}, {x, 1/2, 1}], AspectRatio -> Automatic] [3] Here is a 3D plot of the function: f[x_, y_] = 256 x^4 - 512 x^3 + 64 y x^2 + 320 x^2 - 64 y x - 64 x - 4 y^2 + 20 y; Plot3D[region[x, y] f[x, y], {x, 0, 1}, {y, -0.1, 1.1}, PlotPoints -> 300, Mesh -> False] Cheers, Paul -- Paul Abbott Phone: +61 8 6488 2734 School of Physics, M013 Fax: +61 8 6488 1014 The University of Western Australia (CRICOS Provider No 00126G) 35 Stirling Highway Crawley WA 6009 mailto:paul at physics.uwa.edu.au AUSTRALIA http://physics.uwa.edu.au/~paul