Re: Re: Replacement equivalence?

*To*: mathgroup at smc.vnet.net*Subject*: [mg63358] Re: [mg63352] Re: Replacement equivalence?*From*: Pratik Desai <pdesai1 at umbc.edu>*Date*: Sun, 25 Dec 2005 02:19:36 -0500 (EST)*References*: <do6892$b1t$1@smc.vnet.net><dod6tt$4fd$1@smc.vnet.net> <200512231008.FAA25926@smc.vnet.net> <dojf3r$fpn$1@smc.vnet.net> <200512242103.QAA24201@smc.vnet.net>*Sender*: owner-wri-mathgroup at wolfram.com

carlos at colorado.edu wrote: >Hmm... cant get it to work as stated. Can you try the idea in this >benchmark test > > ClearAll[f,a,b,c,i]; f[b_,c_]:=1/(c+b^2); > v=Table[{i,f[b,i]/.b^2->16},{i,-6,6}]; ListPlot[v,PlotJoined->True]; > >and see if the plot gap goes away? Thanks. > > > This seems to work Clear[b, x, c] f[b_,c_]:=1/(c+b^2); ListPlot[Table[{i, Replace[f[b, i], b -> (b = 4 â?¨ b = -4 )]}, {i, -6, 6}], PlotJoined -> True] Hope this helps Pratik

**References**:**Re: Replacement equivalence?***From:*carlos@colorado.edu

**Re: Replacement equivalence?***From:*carlos@colorado.edu