MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Partial diff equations

  • To: mathgroup at
  • Subject: [mg58510] Partial diff equations
  • From: David Boily <dsboily at>
  • Date: Tue, 5 Jul 2005 01:57:49 -0400 (EDT)
  • Sender: owner-wri-mathgroup at

I have a not difficult to integrate but huge system of partial
differential equations that I would never attempt to solve by hand. So I
tried to feed it to mathematica and got the message bellow. I got annoyed and
tested DSolve with a trivial problem only to realize that, apparently,
mathematica is not very good when it comes to partial diff equations.

Indeed, how come mathematica can't solve this simple system:

DSolve[{D[f[x,y],x]==2 x y^2, D[f[x,y],y]==2 x^2 y}, f[x,y], {x, y}]

the solution is trivial (f[x,y]=x^2 y^2), but if I enter the above
command I get:

   The system has fewer dependent variables than equations, so is

any info would be appreciated,


David Boily
Centre for Intelligent Machines
McGill University
Montreal, Quebec

  • Prev by Date: Function to handle array with variable _number_ of dimensions?
  • Next by Date: How to simulate random samples from crooked coin toss?
  • Previous by thread: Re: Function to handle array with variable _number_ of dimensions?
  • Next by thread: Re: Partial diff equations