Re: computing residues

• To: mathgroup at smc.vnet.net
• Subject: [mg54902] Re: computing residues
• From: Maxim <ab_def at prontomail.com>
• Date: Sat, 5 Mar 2005 01:34:48 -0500 (EST)
• References: <200503010658.BAA25262@smc.vnet.net> <200503030329.WAA21091@smc.vnet.net> <4a6a68e0a91addc250bf47ab9ab03e74@mimuw.edu.pl> <d09d9c\$d4c\$1@smc.vnet.net>
• Sender: owner-wri-mathgroup at wolfram.com

```On Fri, 4 Mar 2005 10:29:00 +0000 (UTC), Andrzej Kozlowski
<akoz at mimuw.edu.pl> wrote:

> I have to admit Mathematica is smarter than I had thought and in fact:
>
>
> Residue[1/Sin[x],{x,Root[8*#1^3-6*#1-1&,3]-Cos[Pi/9]}]
>
> 1
>
> Root[8*#1^3-6*#1-1&,3] in the first part of my example below. In fact
> Residue deals with this case impressively well. This certainly seems to
> reduce the strength  of my argument, though I still would prefer to get
> an unevaluated input in the non-numerical case.
>
> Andrzej
>

This is simply a case where Mathematica assumes sufficiently close values
to be equal:

In[1]:=
Residue[Csc[x],
{x, Root[8*#^3 - 6*# - 1&, 3] - Cos[Pi/9] + 10^-75}]

Out[1]=
1

which is incorrect. Series and Limit make the same 'error of the second
kind'.

Maxim Rytin
m.r at inbox.ru

```

• Prev by Date: Re: Goto Line ?
• Next by Date: Re: Importing HTML tables
• Previous by thread: Re: Re: computing residues
• Next by thread: Re: Re: computing residues