Re: Problem with LaplaceTransform and InverseLaplaceTransform
- To: mathgroup at smc.vnet.net
- Subject: [mg67768] Re: Problem with LaplaceTransform and InverseLaplaceTransform
- From: ab_def at prontomail.com
- Date: Thu, 6 Jul 2006 06:55:01 -0400 (EDT)
- References: <e7td5h$3kh$1@smc.vnet.net><e85gr9$kkv$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
The notation Integrate[f[tau], {tau, 0-, t}] is usually taken to mean Limit[Integrate[f[tau], {tau, eps, t}], eps -> 0, Direction -> 1] (so we bypass the issue of Integrate[DiracDelta[t], {t, 0, Infinity}] == 1/2): In[1]:= Assuming[eps < 0 && t > 0, Integrate[DiracDelta[tau], {tau, eps, t}] + 2*Sum[Integrate[(-1)^k*DiracDelta[tau - Pi*k], {tau, eps, t}], {k, Infinity}] ] // Limit[#, eps -> 0, Direction -> 1]& Out[1]= Piecewise[{{1, t < Pi}}, (-1)^Floor[t/Pi]] Another way is to always define the functions so that they vanish for t < 0 (multiply by UnitStep[t] if necessary). That way we needn't worry about the integration limits (can integrate everything from -Infinity to t) but should be careful to avoid constructs like UnitStep[t]^2: In[2]:= Assuming[k >= 1, Integrate[DiracDelta[tau], {tau, -Infinity, t}] + 2*Sum[Integrate[(-1)^k*DiracDelta[tau - Pi*k], {tau, -Infinity, t}], {k, Infinity}] ] Out[2]= UnitStep[t] + ((-1)^Ceiling[Max[1, (t*UnitStep[-t])/Pi]] + (-1)^Floor[(t*UnitStep[t])/Pi])*UnitStep[-Ceiling[Max[1, (t*UnitStep[-t])/Pi]] + (t*UnitStep[t])/Pi] Maxim Rytin m.r at inbox.ru bghiggins at ucdavis.edu wrote: > Maxim, > > When you include the zero in the integration range you do not get the > same result. The result is off by a factor of 1/2. Is this a bug in > Mathematica or am I missing something? > > Integrate[DiracDelta[Ï?], {Ï?, 0, t}, Assumptions -> t â?? > Reals] + 2*Sum[Integrate[(-1)^k*DiracDelta[Ï? - Pi* > k], {Ï?, 0, t}, Assumptions -> {t > â?? Reals}], {k, Infinity}] // Simplify > > Piecewise[{{1/2, t < Pi}}, -(1/2) + (-1)^Floor[t/Pi]] > > Your result is > > Piecewise[{{1, Inequality[0, LessEqual, t, Less, Pi]}, > {(-1)^Floor[t/Pi], t >= Pi}}] > > These calculations were done on a Mac OSX (10.4.6) with Mathematica > Version 5.2 > > Cheers, > > Brian > > > ab_def at prontomail.com wrote: > > aXi wrote: > > > Can someone point me to site that would help me in using Mathematica > > > 5.2for purpose of calculations related to Systhems theory. I'm having > > > trouble with several topics... for example doing > > > InverseLaplaceTransform of function: > > > > > > (1/s) * (TanH[pi*s/2]) > > > > > > Thanks in advance! > > > > If you want the inverse Laplace transform of Tanh[Pi*s/2]/s, it can be > > found as follows. First take the transform of Tanh[Pi*s/2]: > > > > In[1]:= fs = Tanh[Pi*s/2]/s; > > > > In[2]:= InverseLaplaceTransform[s*fs, s, t] > > > > Out[2]= DiracDelta[t] + 2*Sum[(-1)^K$40*DiracDelta[(-K$40)*Pi + t], > > {K$40, 1, Infinity}] > > > > Then integrate the result: > > > > In[3]:= Integrate[DiracDelta[t], t] + > > 2*Sum[Integrate[(-1)^k*DiracDelta[t - Pi*k], t], {k, Infinity}] > > > > Out[3]= UnitStep[t] + (-1 + (-1)^Floor[t/Pi])*UnitStep[-1 + t/Pi] > > > > Strictly speaking, we need to evaluate Integrate[f[tau], {tau, 0-, t}], > > 'including' the zero in the integration range. > > > > It is easy to see that the result is equal to (-1)^Floor[t/Pi] or > > Sign[Sin[t]]. Here's a check: > > > > In[4]:= LaplaceTransform[Sign[Sin[t]], t, s] - fs // Simplify > > > > Out[4]= 0 > > > > Maxim Rytin > > m.r at inbox.ru